

Powder coating resins based on Eastman NPG[™]glycol and Eastman[™] PIA (purified isophthalic acid) for superior outdoor durability

- Hydroxyl polyester resin and polyester/blocked isocyanate formulation
- Carboxyl polyester resin and polyester/Primid™ XL 552 formulation

Hydroxyl polyester resin and polyester/blocked isocyanate formulation

Synthesis of resin PC-17-8N from Eastman NPG[™] glycol and 95/5 Eastman[™] PIA/TMA

Reactants	Equivalents	Moles	Grams
Eastman NPG™ glycol	13.48	6.739	702
Trimellitic anhydride (TMA)	0.91	0.304	58
Eastman [™] purified isophthalic acid (PIA)	11.54	5.77	958
Fascat [™] 4100 (butylstannoic acid)			1.5
	Total reactant charge		1,719.5
		Water loss	- 219.5
		Resin yield	1,500.0

- Excess glycol of 1%–3% in addition to the charge indicated may be needed depending on the setup of your reactor. We use no excess.
- Eastman[™] purified isophthalic acid reacts faster and cleaner than terephthalic acid. There is less popping of the Eastman[™] PIA up to the dome of the reactor.

Procedure

- Setup: A 3-liter reactor equipped with mechanical stirrer, heated packed column, distillation condenser, thermocouples, nitrogen stream, and accessories needed for a computer controlled reactor.
- 2. Charge reactants, catalyst, and excess glycol to the reactor purged with nitrogen. Increase heat gradually to melt glycol and begin stirring when possible. Maintain a nitrogen stream and stirrer speed at 300 rpm.
- Set heat control as follows; remove water from the reaction through the heated column and distillation condenser.

25°-180°C over 1.3 hours 180°-235°C over 5 hours 235°C hold for 5 hours

4. Process to acid number 4–8 (mg KOH/g resin) and cone and plate melt viscosity at 200°C of 18–25 poise.

Resin properties

Hydroxyl number, mg KOH/g resin	30–36
Acid number, mg KOH/g resin	4–8
Gel permeation chromatography Weight average molecular weight, Mw Number average molecular weight, Mn	12,000–15,000 3,600–3,800
T _g , glass transition temperature (DSC, 2nd cycle, midpoint)	55°-60°C
Melt viscosity, cone and plate, at 200°C, poise (Pa·s)	18–25 (1.8–2.5)

Formulation of polyester/polyurethane powder coatings based on resin PC-17-8N

Ingredients	Grams
Polyester resin PC-17-8N	574
Blocked isophorone diisocyanate (Vestagon™ B1530)	
Dibutyltindilaurate, 60% active on powder substrate	
Benzoin	7
Flow control agent (Modaflow™ 2000)	10.5
TiO ₂ , TiPure™ R960	350
Total weight	1,079.2

- If a self-blocked isophorone diisocyanate (e.g., Vestagon BF 1540) is used, a higher extrusion temperature and cure at 190°C (375°F) for 20 minutes are necessary.
- A 30-mm twin-screw extruder is used with zone 1 and zone 2 set at 90°C and 100°C respectively with screw speed of 300 rpm.
- Powder particle size average is 25 microns; maximum is 74 microns.
- Powder caking stability test at 40°C for 3 days is acceptable.

Physical properties of coating enamela,b

Cure temperature/time, °C/min (°F/min)	176-204/20 (350-400/20)	
Thickness, micron (mil)	48.3–53.3 (1.9–2.1)	
Initial gloss, Gardner 20°/60°	75/93	
Impact resistance, front/reverse, N·m (in·lb)	4.7/0.7 (42/6)	
Pencil hardness	H-2H	
Solvent resistance, MEK double rubs	200+	
Conical mandrel flexibility, 3 mm (1/8 in.), % pass	0	

 $^{{}^{\}mathtt{a}} \textit{Unprimed, zinc phosphated cold roll steel panels are used.}$

 $^{^{\}mathrm{b}}$ Impact test results are determined using a 10X magnifier critically. Your results may be better than those reported here.

Carboxyl polyester resin and polyester/Primid™ XL 552 formulation

Synthesis of carboxyl resin PC-17-9N

	,		
Reactants	Equivalents	Moles	Grams
First stage			
Eastman NPG™ glycol	11.630	5.815	605.6
Trimethylolpropane (TMP)	0.540	0.180	24.1
Eastman™ purified isophthalic acid (PIA)	10.945	5.473	909.2
Triphenyl phosphite			0.75
Fascat [™] 4100 (butylstannoic acid)			1.5
Second stage			
Eastman™ purified isophthalic acid (PIA)	2.107	1.053	175
	Total react	ant charge	1,716.15
		Water loss	-216.15
		Resin yield	1,500.0

- Excess glycol of 1% is used in this cook. An excess of 1%–3% may be needed depending on reactor setup.
- Eastman™ purified isophthalic acid reacts faster and cleaner than terephthalic acid. There is less popping of the Eastman™ PIA up to the dome of the reactor.

Procedure

- Setup: A 3-liter reactor equipped with mechanical stirrer, heated packed column, distillation condenser, thermocouples, nitrogen stream, and accessories needed for a computer-controlled reactor.
- Charge and heat the first stage glycols to 140°C.
 Add the first stage acids, stabilizer, and catalyst while maintaining a nitrogen stream and a stirrer speed of 300 rpm.
- Set heat control as follows; remove water from the reaction through the heated column and distillation condenser.

25°-180°C over 1.3 hours 180°-235°C over 5 hours 235°C hold for 3 hours

- 4. Process to acid number of 5–10 (mg KOH/g resin) and cone and plate melt viscosity at 200°C of 4–8 poise.
- 5. Cool to 180°C and add the second stage Eastman™ purified isophthalic acid.
- 6. Heat to 235°C and hold at 235°C for 2 hours followed by 2 hours of mild vacuum.
- 7. Process to acid number 32–38 (mg KOH/g resin) and cone and plate melt viscosity at 200°C of 24–30 poise.

Resin properties

Hydroxyl number, mg KOH/g resin	5–10
Acid number, mg KOH/g resin	32–38
Gel permeation chromatography Weight average molecular weight, Mw Number average molecular weight, Mn	10,000–11,000 3,000–3,300
T _g , glass transition temperature (DSC, 2nd cycle, midpoint)	63°-67°C
Melt viscosity, cone and plate, at 200°C, poise (Pa·s)	24–30 (2.4–3.0)

Formulation and physical properties of polyester/Primid™ XL552 powder coating based on resin PC-17-9N

Ingredients		Grams
Polyester resin PC-17-9N		570
Primid™ XL 552		30
Benzoin		3
Flow control agent (Modaflow 2000)		10.5
TiO ₂ , TiPure [™] R960		300
	Total weight	913.5

- A 30-mm twin-screw extruder is used with zone 1 and zone 2 set at 100°C and 110°C respectively with screw speed of 300 rpm.
- Powder particle size average is 25 microns; maximum is 74 microns.
- Powder-caking stability test at 40°C for 3 days is acceptable.

Physical properties of coating enamela,b

176-204/20 (350-400/20)
48.3–53.3 (1.9–2.1)
80/94
4.7/0.7 (42/6)
Н
200+
0
_

 $^{{\}it ^aUnprimed, zinc\ phosphated\ cold\ roll\ steel\ panels\ were\ used.}$

Raw material suppliers

Eastman NPG™ glycol	Eastman
Trimellitic anhydride	BP Amoco
Trimethylolpropane (TMP)	Celanese, Perstorp
Eastman™ purified isophthalic acid (PIA)	Eastman
Fascat [™] 4100	Arkema, Inc.
Primid™ XL552 EMS	EMS Chemie AG
Benzoin	Estron Chemical, Inc.
Modaflow™ 2000	Cytec
Dibutyltindilaurate, 60% active on powder substrate	Aldrich
TiPure™ R960	DuPont

 $^{^{\}mathrm{b}}$ Impact test results were determined using a 10X magnifier critically. Your results may be better than those reported here.

EASTMAN

Eastman Chemical Company Corporate Headquarters

P.O. Box 431 Kingsport, TN 37662-5280 U.S.A.

Telephone:

U.S.A. and Canada, 800-EASTMAN (800-327-8626)

Other Locations, (1) 423-229-2000

Fax: (1) 423-229-1193

Eastman Chemical Latin America

9155 South Dadeland Blvd. Suite 1116 Miami, FL 33156 U.S.A.

Telephone: (1) 305-671-2800 Fax: (1) 305-671-2805

Eastman Chemical B.V.

Fascinatio Boulevard 602-614 2909 VA Capelle aan den IJssel The Netherlands

Telephone: (31) 10 2402 111 Fax: (31) 10 2402 100

Eastman (Shanghai) Chemical Commercial Company, Ltd. Jingan Branch

1206, CITIC Square No. 1168 Nanjing Road (W) Shanghai 200041, P.R. China Telephone: (86) 21 6120-8700 Fax: (86) 21 5213-5255

Eastman Chemical Japan Ltd.

MetLife Aoyama Building 5F 2-11-16 Minami Aoyama Minato-ku, Tokyo 107-0062 Japan

Telephone: (81) 3-3475-9510 Fax: (81) 3-3475-9515

Eastman Chemical Asia Pacific Pte. Ltd.

#05-04 Winsland House 3 Killiney Road Singapore 239519

Telephone: (65) 6831-3100 Fax: (65) 6732-4930

www.eastman.com

Material Safety Data Sheets providing safety precautions that should be observed when handling and storing Eastman products are available online or by request. You should obtain and review the available material safety information before handling any of these products. If any materials mentioned are not Eastman products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

Neither Eastman Chemical Company nor its marketing affiliates shall be responsible for the use of this information or of any product, method, or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. NO WARRANTY IS MADE OF THE MERCHANTABILITY OR FITNESS OF ANY PRODUCT, AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

© 2013 Eastman Chemical Company. Eastman and NPG are trademarks of Eastman Chemical Company.

Vestagon is a trademark of Evonik Degussa GmbH.