Success with water-dispersible sulfopolyesters

High performance polymers for formulated products
Thermoplastic, aromatic polyesters are high performance polymers widely used in textiles and packaging applications because of their strength, toughness, optical clarity, safety profile, recyclability, and ease of processing. Eastman is a global leader in specialty copolyesters used in packaging and consumer products. In the 1970s, Eastman researchers invented water-dispersible sulfopolyesters to translate the benefits of polyesters into waterborne formulated products. Eastman water-dispersible sulfopolyesters are amorphous, aromatic polymers containing anionic sulfonate groups. Eastman’s portfolio of sulfopolyesters spans a broad range of physical properties to satisfy performance requirements in coatings, inks, adhesives, textile sizing, and personal care applications.

Benefits

- Disperses readily
- Low-viscosity dispersions—good for gravure and spray applications
- Dispersion/emulsification capacity for oils, waxes, silicones, and pigments—improves formulation stability
- High gloss—smooth, dense films with high refractive index
- Excellent film formation
- Low tack—for high-T_g polymers
- Water/humidity-resistant films—for low-charge-density polymers
- Fast drying—higher running speeds for printing and roll-coating operations
- Low odor—no need for amines
- Stable pH and viscosity
- Low foaming—no surfactant
- Stable with metallic pigments
- Near neutral pH
- Excellent adhesion to various substrates—wood, aluminum, fibers, skin, and hair
Product line

Eastman water-dispersible sulfopolyesters are available in a variety of solid and liquid product forms, with a range of physical properties that enable their use in diverse applications. Several sulfopolyesters are available in both solid and dispersion form.

Sulfopolyester composition and properties

Composition

Sulfopolyesters are prepared by melt-phase polymerization of glycols and aromatic diacids. Typical monomers used to produce water-dispersible sulfopolyesters are isophthalic acid (IPA), 5-sodiosulfoisophthalic acid (5-SSIPA), 1,4-cyclohexanedimethanol (CHDM), and diethylene glycol (DEG).

Eastman AQ™ 38S and 55S polymers and Eastman AQ™ 48 ultra polymer contain these four monomers but in different ratios. For cosmetics and personal care applications, they have been assigned the same INCI (International Nomenclature of Cosmetic Ingredients) name, Polyester-5.

Because water-dispersible sulfopolyesters are produced under conditions of excess diol, the polymer chains are mostly terminated by hydroxyl groups. Most have hydroxyl and carboxyl numbers of ~10 and ~2, respectively.

Molecular weight

Eastman water-dispersible sulfopolyesters typically have number-average molecular weight $M_n = 5\text{–}15$ kDa, weight-average molecular weight $M_w = 20\text{–}30$ kDa, and polydispersity index $M_w/M_n \sim 2$.

Glass transition temperature

Eastman sulfopolyesters span a range of glass transition temperatures (T_g) from ~0° to ~65°C. See Table 1.

Table 1. Typical properties of Eastman water-dispersible sulfopolyesters

<table>
<thead>
<tr>
<th>Approximate T_g (°C)</th>
<th>Calculated charge density (meq/g)</th>
<th>Solid form</th>
<th>Dispersion form*</th>
<th>Dispersion formb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.32</td>
<td>Eastman AQ™ 1350 copolyester</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.38</td>
<td>Eastman AQ 1950 copolyester</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.38</td>
<td>Eastman AQ 2350 copolyester</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.45</td>
<td>—</td>
<td>Eastek™ 1400 polymer dispersion</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.47</td>
<td>—</td>
<td>Eastek 1300 polymer dispersion</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.43</td>
<td>Eastman AQ 38S polymer</td>
<td>Eastek 1000 polymer dispersion</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.89</td>
<td>Eastman AQ 48 ultra polymer</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.66</td>
<td>Eastman AQ 55S polymer</td>
<td>Eastek 1100 polymer dispersion</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0.33</td>
<td>Eastman AQ 65S polymer</td>
<td>Eastek 1200 polymer dispersion</td>
<td></td>
</tr>
</tbody>
</table>

*Properties reported here are typical of average lots. Eastman makes no representation that the material in any particular shipment will conform exactly to the values given.

*Eastek products are supplied as 30% solids in aqueous dispersions. The exceptions are Eastek 1100 which contains 33% solids and Eastek 1200 which contains 2% n-propanol.
Charge density
Cationic and anionic polymers are characterized by their charge density, usually expressed as milliequivalents (meq) of anionic or cationic groups per gram of polymer. Calculated charge densities of Eastman water-dispersible sulfopolyesters range from 0.3 to 0.9 meq/g. See Table 1. Sulfopolyesters with high charge density are more easily dispersed in water, form smaller aggregates in dispersions, and are preferred as dispersants. Sulfopolyesters with low charge density produce films with better water/humidity resistance.

Refractive index
Compared to many commonly used formulation polymers, aromatic sulfopolyesters have high refractive index, from ~1.55 to ~1.57.

Sulfopolyesters disperse in water
An important distinction between sulfopolyesters and water-soluble polymers (e.g., polyvinyl alcohol or polyvinyl pyrrolidone) is that dispersed sulfopolyesters spontaneously form small negatively charged aggregates suspended in water. These aggregates are prevented from precipitation by electrostatic repulsion. The size of dispersed sulfopolyester aggregates, measured by light scattering and chromatographic particle size analysis, ranges from 10 to 30 nm diameter and depends inversely on charge density. Sulfopolyester aggregates in this size range have aggregation numbers of 10–100 polymer chains per particle. Consequently, the aggregates resemble surfactant micelles and are much smaller than the particles in typical emulsion polymer latexes.

Preparation of dispersions
Sulfopolyesters with charge density >0.35 meq/g disperse readily in water at modest temperatures (40°–80°C) without the assistance of emulsifiers, organic cosolvents, inorganic bases, amines, or other additives. Complete dispersion is normally achieved in 20–30 minutes, depending on the sulfopolyester composition and water temperature. Deionized or soft water (total hardness less than 20 mg/kg is recommended for sulfopolyester dispersions because multivalent cations (e.g., Ca²⁺) can retard the dispersion rate. If multivalent cations are present in sufficient concentration, they can produce opaque or unstable dispersions. Sulfopolyesters with charge density <0.35 meq/g generally require higher dispersion temperatures, longer dispersion times, and/or an organic cosolvent (e.g., 1-propanol).

Viscosity of sulfopolyester dispersions
An important consequence of the particulate nature of dispersed sulfopolyesters is the functional dependence of dispersion viscosity on percent solids. Unlike solution polymers whose chains entangle at low concentration, sulfopolyester dispersions have low viscosity (typically <100 cP) up to 30% w/w. Above 30%, the viscosity rises very rapidly with increasing concentration. In this, they resemble latexes but the viscosity increases at significantly lower percent solids.
Stability of sulfopolyester dispersions
Aqueous dispersions of sulfopolymers are potentially susceptible to two forms of instability: (1) flocculation/precipitation caused by cations, especially multivalent cations, and (2) hydrolysis of dispersed sulfopolyester chains. At high concentration, even monovalent cations (Na⁺) can cause the viscosity to increase, potentially leading to gel formation. Sulfopolymers in aqueous dispersions exhibit good chemical stability at pH 5–7.5. In this pH range, there is no significant change in molecular weight after 1-year storage at room temperature. Below pH 5, acid-catalyzed hydrolysis results in a decrease in molecular weight over time, especially at elevated temperatures. Similarly, above pH 7.5, base-catalyzed hydrolysis (saponification) can result in precipitation.

Emulsification/dispersion capacity of sulfopolymers
Sulfopolymers have significant capacity to function as secondary emulsifiers or dispersants for a variety of hydrophobic materials, e.g., vegetable oils, fragrances, waxes, organic UV filters, petrolatum, silicones, and pigments.

- Vegetable oils can be dispersed in aqueous sulfopolyester dispersions up to a weight ratio of 80:1 oil to sulfopolyester.
- Silicone oil (polydimethylsiloxane) emulsions can be produced by high-shear mixing ~70 wt% dimethicone with ~3 wt% Eastman AQ™ 48 ultra polymer in water. Once formed, these emulsions are easily water reducible, indicating the dispersed phase is silicone.
- Waxes can be dispersed in water using sulfopolymers as polymeric emulsifiers at temperatures above the melting temperature of the waxes. When dispersing waxes, the wax-to-sulfopolyester weight ratio can be as high as 15:1 with up to 45% total solids. Comparison of two sulfopolymers revealed that the higher-charge-density polymer dispersed the wax faster.
- Dispersed sulfopolymers also help disperse solid pigments, both organic and inorganic, in water. This performance has been utilized in inks, coatings, and color cosmetics. In cosmetic emulsions, this means that pigments can be added and dispersed in the aqueous phase instead of the oil phase if desired. Pigments can be surface treated with sulfopolymers to provide water dispersibility.

Film formation
When applied to solid surfaces, aqueous or hydroalcoholic sulfopolyester dispersions dry quickly, producing smooth glossy films. Formation of films from dispersed sulfopolymers resembles those formed from waterborne latexes.

Minimum film formation temperature (MFFT)
For conventional polymer latex, the minimum film formation temperature is approximately equal to the T_g of the polymer. For polymers with T_g above ambient temperature, either the coating must be heated or a coalescing agent, typically an organic coalescent, must be added to reduce the T_g of the polymer. Because water-dispersible sulfopolymers are plasticized by water, the MFFT for the sulfopolymers is typically about 20°C below the T_g and occurs without added organic coalescent except for the highest-T_g sulfopolyester.

Drying time
It is likely that both the easy coalescence of sulfopolymer aggregates and the fast drying are due, in part, to the very small size of polymer aggregates in sulfopolyester dispersions. Coalescence is also facilitated by hydroplasticization, that is, plasticization of the polymer film by water.
Physical properties of sulfopolyester films

Tack
Sulfopolysterers with \(T_g > 38 \text{°C} \) produce films with low tack. If tack is desired, select a low-\(T_g \) polymer or add a nonvolatile plasticizer.

Flexibility
Thin sulfopolyester films with \(T_g > 45 \text{°C} \) are rigid, with <1% elongation at break. The flexibility of sulfopolyesters is easily modified with a variety of plasticizers, e.g., propylene glycol, glycerin, triethyl citrate (TEC), and 2-butoxyethanol.

Water/humidity resistance of sulfopolyester films
As expected, the intrinsic water resistance of sulfopolyester films is inversely dependent on the polymer’s charge density; low-charge-density polymers are more water resistant than high-charge-density polymers. Because sulfopolysters don’t disperse in high ionic strength media, they can provide even greater resistance against body fluids, e.g., sweat. This performance benefit has been exploited in sweat-resistant hairstyling products and sunscreens.

The water resistance of a film containing sulfopolyester is highly dependent on the nature of other additives in the formulation; for example, plasticizers that may have been added to improve the film’s flexibility. Hydrophobic plasticizers (e.g., triethyl citrate) preserve or enhance water resistance, while a similar amount of a hydrophilic plasticizer (e.g., glycerin) yields a film which will absorb water vapor and disperse in water more readily.

The Na+ cations in a sulfopolyester film are labile and can be exchanged by contact with an aqueous solution containing free multivalent cations, e.g., Ca\(^{+2}\). These will cross-link the sulfopolyester film, greatly increasing its water resistance.

Gloss
Because of the simple relationship between specular reflectivity and the refractive index difference at a smooth interface, the gloss of a smooth polymer surface is determined by the polymer’s refractive index. Sulfopolyester dispersions, having small-sized aggregates, form very smooth, glossy films. If a matte finish is desired, conventional mattifying agents (e.g., clays or silica) have been found to work well in sulfopolyester films/coatings.

Health, safety, environmental, and regulatory information

Eastman conducts product safety reviews to help minimize the potential for adverse effects on health and the environment from use of our products, as well as to ensure that product-specific regulatory requirements are met. Eastman’s Product Safety and Health team reviews the raw materials, final composition, and manufacturing process steps for our products to help ensure that they comply with applicable laws and regulations. We are committed to developing products that can be manufactured, transported, used, and disposed of or recycled safely.

Eastman AQ linear sulfopolyesters have been the subject of extensive toxicological testing. End points evaluated include acute (oral, dermal, and inhalation) and subchronic (inhalation) toxicity, mutagenicity potential, dermal (acute and repeat exposure), and ocular irritation, as well as sensitization potential. Much of this data comes from studies that were conducted using Eastman AQ™ 55 polymer as a representative prototype of the class of AQ polymers which share very similar chemical compositions and properties. Results from these studies indicate that Eastman AQ linear polyesters can be used in many different applications with adequate safety margins. A summary of these toxicology results is available on request.

For more information, including safety data sheets, technical data sheets, and regulatory information sheets, visit Eastman.com. You can also contact your Eastman sales representative directly.
Applications

Table 2 presents known applications of Eastman water-dispersible sulfopolyesters and is intended to stimulate, not stifle, the creativity of formulators. Any of these polymers may provide benefits in these or other applications. For example, Eastman AQ 38S, 48 ultra, and 55S polymers have been reviewed for certain cosmetics applications. However, it is the responsibility of our customers to determine that their use of our product(s) is safe, lawful, and technically suitable in their intended applications. Because of possible changes in the law and regulations as well as possible changes in our products, we recommend that customers continuing to use these products verify their regulatory status periodically.

Table 2. Applications of Eastman water-dispersible sulfopolyesters

<table>
<thead>
<tr>
<th>Product name</th>
<th>Coating and primers</th>
<th>Personal care and cosmetics</th>
<th>Hot-melt adhesives</th>
<th>Pigment dispersants</th>
<th>Printing inks and overprints</th>
<th>Textile sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastek™ 1000 polymer dispersion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eastek 1100 polymer dispersion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastek 1200 polymer dispersion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastek 1300 polymer dispersion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastek 1400 polymer dispersion</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman AQ™ 1350 copolyester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 1950 copolyester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 2350 copolyester</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 38S polymer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 48 ultra polymer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 55S polymer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eastman AQ 65S polymer</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Water-dispersible sulfopolyesters possess a combination of properties and performance benefits that commend their use in numerous applications. Their performance in formulated products will ultimately depend on the entire formulation and use conditions. The key to success is selecting the right polymer for your application and combining it with ingredients that augment, not compromise, its performance. Contact an Eastman representative to help you get started.
Although the information and recommendations set forth herein are presented in good faith, Eastman Chemical Company ("Eastman") and its subsidiaries make no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent, and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER’S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available online or by request. You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© 2017 Eastman. Eastman brands referenced herein are trademarks of Eastman or one of its subsidiaries or are being used under license. The ® symbol denotes registered trademark status in the U.S., marks may also be registered internationally. Non-Eastman brands referenced herein are trademarks of their respective owners.