One of the major challenges in compounding thermoplastic elastomers (TPEs) such as styrenic block copolymers (SBCs) is optimizing physical and mechanical properties while maintaining favorable rheological properties for processing. Often, formulators are faced with trade-offs between properties and economics, compression and cost, and toughness and moldability.

To help eliminate these challenges and trade-offs, Eastman’s pure monomer-based resins (PMRs) are specifically engineered to provide the necessary rheology control while providing the optimum physical and mechanical properties for specific applications.

The benefits of switching to Eastman PMRs in compounds based on SBCs, specifically styrene ethylene butylene styrene (SEBS), include:

- **Improved processability**—better flow properties without losing mechanical properties
- **Improved mechanical properties**—higher tensile and tear strengths
- **Hardness control**—the ability to maintain the control hardness based on resin selection

Table 1. Eastman pure monomer resins (PMRs)

<table>
<thead>
<tr>
<th></th>
<th>Kristalex™ hydrocarbon resin 3100</th>
<th>Kristalex™ hydrocarbon resin 5140</th>
<th>Piccolastic™ hydrocarbon resin D125</th>
<th>Endex™ hydrocarbon resin 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&B SP, °C</td>
<td>100</td>
<td>139</td>
<td>125</td>
<td>155</td>
</tr>
<tr>
<td>Tg, °C</td>
<td>53</td>
<td>85</td>
<td>64</td>
<td>99</td>
</tr>
<tr>
<td>Mz, °C</td>
<td>2,250</td>
<td>12,100</td>
<td>179,000</td>
<td>13,850</td>
</tr>
<tr>
<td>Mw, °C</td>
<td>1,500</td>
<td>2,800</td>
<td>37,400</td>
<td>6,950</td>
</tr>
<tr>
<td>Mn, °C</td>
<td>700</td>
<td>800</td>
<td>1,300</td>
<td>2,400</td>
</tr>
<tr>
<td>Pd</td>
<td>2.1</td>
<td>3.5</td>
<td>28.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

R&B SP—ring-and-ball softening point
Morphological changes

Addition of PMRs into an SEBS polymer helps control the morphology to obtain the best performance. Due to the specific chemistry of these resins, they migrate to the polystyrene phase of the SEBS, which helps improve the mechanical properties as well as the processability of SEBS-based TPEs. Figure 1 shows the change in morphology of SEBS polymer with the addition of Eastman pure monomer resins. The formulation used for this study is detailed in Table 2.

Table 2. Study formulation

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraton™ G1651</td>
<td>15%–20%</td>
</tr>
<tr>
<td>Kraton™ G1650</td>
<td>15%–20%</td>
</tr>
<tr>
<td>Drakeol™ 34 oil</td>
<td>25%–30%</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>10%–15%</td>
</tr>
<tr>
<td>ExxonMobil™ polypropylene resin PP3155</td>
<td>10%–15%</td>
</tr>
<tr>
<td>Eastman resin</td>
<td>0%–10%</td>
</tr>
</tbody>
</table>

Figure 1. SEBS morphology with 10% pure monomer resin (Kristalex™ hydrocarbon resin 5140)

Physical and mechanical properties

Figure 2 shows the change in hardness with the addition of PMRs. Migration of PMRs to the polystyrene phase leads to further reinforcement, which raises the hardness of the overall formulation.

Figure 2. Hardness (Shore A) of TPE compounds with PMRs

Figure 3 shows the effect of PMRs on tensile strength. All PMRs significantly increase the tensile strength of the studied SEBS-based formulation. This is mainly due to the reinforcing effect and the overall increase in the volume fraction of the styrene phase. However, the 300% modulus data given in Figure 4 shows that higher-molecular-weight resins exhibit significant increase in modulus. Thus, Eastman's broad resin portfolio helps one to tailor SEBS-based formulations for specific applications.

Figure 3. Tensile strength (psi) of TPE compounds with PMRs
Melt flow index

Addition of resins substantially increases the melt flow of SEBS-based TPEs. Lower-molecular-weight PMRs show the most significant increase in melt flow index (MFI).

TPE applications

Thermoplastic elastomers are used in a variety of applications, including:

- Athletic shoe soles
- Automotive boots
- Automotive ducting
- Automotive and industrial hosing
- Automotive interiors
- Caster wheel treads
- Closures
- Cosmetics packaging
- Construction seals
- Conveyor belting
- Dishwasher boots and seals
- Films
- Flexible extruded parts
- Food contact diaphragms
- Food storage
- Kitchenware grips
- Moldable gels
- Plumbing gaskets
- Softer oil-resistant grips
- Solar collector seals
- Toothbrush and razor soft grips
- Tubing
- Wire and cable insulation

Summary

The use of Eastman pure monomer resins in SEBS-based TPE compounds improves processability, increases tensile and tear strength, and has minimal impact on a compound’s hardness.

For more information, visit www.eastman.com/TPE.
Although the information and recommendations set forth herein are presented in good faith, Eastman Chemical Company and its subsidiaries make no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent, and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER’S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available online or by request. You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© 2016 Eastman Chemical Company. Eastman brands referenced herein are trademarks of Eastman Chemical Company or one of its subsidiaries or are being used under license. The ® symbol denotes registered trademark status in the U.S., marks may also be registered internationally. Non-Eastman brands referenced herein are trademarks of their respective owners.