

Appliance coil coatings

Based on Eastman[™] 1,4-CHDA and Eastman[™] CHDM

- Excellent flexibility with stain resistance
- Good hardness and humidity resistance
- Low color

Starting point formulations PA-1-1CNCp and PA-1-2CNCp

Table 1 Reactor charge^a

	PA-1-1CNCp		PA-1-2CNCp			
	Equivalents	Moles	Grams	Equivalents	Moles	Grams
First stage						
Eastman NPG [™] glycol	7.38	3.69	385	6.58	3.29	343
Eastman [™] CHDM glycol	4.92	2.46	355	4.39	2.19	316
1,6-Hexanediol	—	—	—	1.22	0.61	72
Adipic acid	1.16	0.58	85	—	_	_
Eastman [™] purified isophthalic acid (PIA)	2.32	1.16	193	2.30	1.15	191
Eastman [™] purified terephthalic acid (PTA)	2.32	1.16	193	2.30	1.15	191
Second stage						
Eastman [™] 1,4-CHDA	5.80	2.90	499	6.90	3.45	594
	Total charge		1,710			1,707
Theoretical distillate			210			207
Theoretical yield			1,500			1,500
$R = \frac{\text{Equivalents of OH}}{\text{Equivalents of CO}_2 \text{H}} = 1.06$						
Eastman [™] CHDM:Eastman NPG [™] glycol mola	ar ratio 40:60		Catalyst: 1	.7 g Fascat [™] 4100), charged	in 2 parts
Eastman™ PIA:Eastman™ PTA molar ratio	50:50		Nitrogen f	low: 0.8 standard	cubic ft/h	n (SCFH)
1,6-HD or AD molar content based on glycol or acid component	10%		Azeotrope	solvent: 45 g Arc	omatic [™] 15	50

^aSee raw material suppliers table on page 4.

Synthesis procedure

First stage

- Charge first stage reactants (glycols first) and half of the catalyst to a 2-liter reaction kettle equipped with a heating mantle, agitator, nitrogen supply, temperature probe, steam-heated packed partial condenser, water trap, and total condenser.
- 2. Heat to 220°C (428°F) over 2 hours. Maintain at 220°C until an acid number of 1 (mg KOH/g resin) or less is reached, typically an additional 1 hour.
- 3. Cool to 140°C (284°F) for second stage charge.

Second stage

- 4. After cooling to 140°C (284°F), charge the Eastman[™] 1,4-CHDA.
- 5. Heat to 230°C (446°F) over 2 hours. Maintain at 230°C until an acid number of 25 (mg KOH/g resin) or less is reached, typically an additional 2 hours.
- 6. Cool to 140°C (284°F).
- 7. After cooling to 140°C (284°F), remove steam-heated packed partial condenser or switch to an open column. Charge the remaining catalyst and 45 grams (plus the amount required to fill the water trap) of Aromatic[™] 150.
- 8. Heat to 230°C (446°F) over 1 hour. Maintain at 230°C until an acid number of 4 ± 1 (mg KOH/g resin) is reached, typically an additional 2 hours.
- Cool to 140°C (284°F) and adjust to 60 wt% solids with Aromatic[™] 150. Total processing time may range from 9 to 12 hours.

Table 2 Resin properties

Resin properties	PA-1-1CNCp	PA-1-2CNCp
Acid number, mg KOH/g resin	4	4
Hydroxyl number, mg KOH/g resin	36	31
Molecular weight, M _n ª	4,270	4,630
Molecular weight, M_w^a	10,720	12,980
ICI viscosity @ 200°C, poise (Pa·s)	33 (3.3)	29 (2.9)
Gardner-Holdt [™] viscosity	Z ₅	Z ₄
APHA color	80	80
Tg, ^b ℃	23	23
Solvent	Aromatic [™] 150	Aromatic [™] 150
Calculated nonvolatiles, wt%	60	60
Determined density, lb/gal (kg/L)	8.77 (1.05)	8.70 (1.04)
Days to hazing @ room temperature	210	270

*Molecular weight in styrene equivalents determined using GPC with a refractive index detector.

^bDetermined by DSC (Midpoint of 2nd heat reported; upheat rate of 20°C/min).

Table 3 Enamel formulation

Ingredients		Wt%
Polyester resin (60 wt% nonvolatiles)		56.3
Cymel [™] 301 melamine resin		3.6
Ti-Pure [™] R-960 TiO₂ pigment		25.0
Nacure [™] 1419 catalyst		1.9
Acrylic flow control agent		0.6
Solvent blend ^a		12.6
		100.0
Pigment:binder ratio	40:60	
Polyester:melamine ratio	90:10	

°64/12/24 wt % blend of Eastman[™] C-11 ketone/Eastman[™] EEP/Eastman[™] EB

Adjust the enamels to 50% by volume solids with the solvent blend. Using an automated drawdown device, apply coating to Q-Panel[™] AL-39 aluminum substrates with chromium pretreatment and cure for 30 seconds at 313°C (595°F) to obtain a peak metal temperature of 216°C (420°F).

Appliance coil coatings Based on Eastman[™] 1,4-CHDA and Eastman[™] CHDM (Continued)

Table 4 Enamel properties and performance

		PA-1-1CNCp	PA-1-2CNCp
Film thickness, microns (mils)		19 (0.75)	19 (0.75)
Gloss @ 60°/20°		90/78	86/73
MEK double-rub solvent resistance ^a		90	80
Hardness/flexibility			
T-bends ^b		With grain/A	Against grain
Initial		1T/0T	1T/0T
Overbake, 30 s @ 260°C (500°F)		3T/2T	3T/2T
Wet heat, 30 s in boiling water		2T/2T	2T/1T
Reverse impact resistance @ 40 inlb	o (4.5 N·m), % pass	100	100
Pencil hardness (to mar)			
Initial		2H	2H
30 min boiling water test, min to	o recovery	15	30
Adhesion			
Crosshatch adhesion, % pass ^b		100	100
Stain resistance ^{c,d}		Covered/l	Jncovered
lodine after 30 min		3/4	2/4
Mustard after 24 h		4/5	3/4
Lipstick after 24 h		4/4	3/3
Ink after 24 h		4/4	4/3
Catsup after 24 h		5/5	5/5
Grape juice after 24 h		5/5	5/5
Etch resistance after 8 h ^{c,d}			
50% NaOH solution		5/5	5/5
50% H_2SO_4 solution		5/5	5/5
Detergent resistance @ 74°C (165°F) ^e		5 Days/	10 Days
Creepage detected		none/none	none/none
% Gloss retention 60°		96/69	98/95
20°		74/24	84/63
Blister size ^f		8/6	8/6
Blister frequency ^f		4/2	4/2
Cracking ^b		5/5	5/5
Cleveland humidity resistance ^g @ 60°C	(140°F)		
% Gloss retention, 60°/20° after	r: 1,000 h	100/99	99/89
	1,250 h	99/99	95/78
	1,500 h	88/54	11/3
	1,750 h	74/36	7/3

^aDouble rubs with methyl ethyl ketone (MEK) to breakthrough

^bResults were checked using Scotch brand tape No. 610 (3M Company). After 24 hours relaxation, samples showed no cracking under unmagnified visual inspection.

^cThe stain- and chemical-resistant panels were washed with Dawn[™] dishwashing detergent (Procter & Gamble Company), rinsed with water, and wiped dry before evaluation.

^dScale: 5 = no effect; 1 = severe effect

°Test environment from ASTM method D2248.

^fASTM method D714, evaluating degree of blistering of paint. Blister size rating: 10 = no blisters; 2 = large blisters; Blister frequency: 5 = none; 1 = dense

⁸ASTM method D4585

Structure/property benefits

Eastman intermediate	Structure	Benefits
CO ₂ H	Saturated ring structure	Excellent hardness and flexibility ratio
		Better hydrolytic stability, etch, and stain resistance than aliphatic acids
CO ₂ H 1,4-CHDA		Very good solubility in molten glycols for rapid processing
		Low resin color
	1,4-Substituted saturated ring	Excellent thermal stability
	structure	Moderate T _g
CH ₂ OH	Primary, unhindered hydroxyl groups	Very rapid polymer synthesis
CH ₂ OH		Lower temperature or reduced cure time during crosslinking
		Low resin color
	1,4-Substituted saturated ring structure Symmetrical structure	Very good hardness and flexibility ratio
		High T _g
		Excellent thermal stability
		High T _g

Summary

Both resins contain Eastman[™] 1,4-CHDA, Eastman[™] purified isophthalic acid (PIA), Eastman[™] purified terephthalic acid (PTA), Eastman[™] CHDM, and Eastman NPG[™] glycol. The cycloaliphatic structures of Eastman[™] 1,4-CHDA and Eastman[™] CHDM provide **good hardness** and contribute **flexibility**. These appliance formulations offer reproducible 1T-bends from resins containing only 5 mole percent of the typical flexibilizing monomers adipic acid or 1,6-hexanediol.

Raw material suppliers

Eastman [™] 1,4-CHDA	Eastman	
Eastman [™] CHDM glycol	Eastman	
Eastman NPG [™] glycol	Eastman	
Eastman [™] EEP	Eastman	
Eastman [™] C-11 ketone	Eastman	
Eastman [™] EB	Eastman	
Eastman [™] purified isophthalic acid	Eastman	
Cymel [™] 301 resin	Cytec	
Fascat [™] 4100 catalyst	Arkema	
Ti-Pure [™] R-960 TiO ₂	DuPont	
1,6-Hexanediol	BASF	
Eastman [™] purified terephthalic acid	Eastman	
Adipic acid	DuPont	
Nacure [™] 1419 catalyst	King Industries	
Aromatic [™] 150 solvent	Exxon	

Eastman Chemical Company

Corporate Headquarters P.O. Box 431 Kingsport, TN 37662-5280 U.S.A.

Telephone: U.S.A. and Canada, 800-EASTMAN (800-327-8626) Other Locations, (1) 423-229-2000 Fax: (1) 423-229-1193

Eastman Chemical Latin America

9155 South Dadeland Blvd. Suite 1116 Miami, FL 33156 U.S.A.

Telephone: (1) 305-671-2800 Fax: (1) 305-671-2805

Eastman Chemical B.V.

Fascinatio Boulevard 602-614 2909 VA Capelle aan den IJssel The Netherlands

Telephone: (31) 10 2402 111 Fax: (31) 10 2402 100

Eastman (Shanghai) Chemical Commercial Company, Ltd. Jingan Branch

1206, CITIC Square No. 1168 Nanjing Road (W) Shanghai 200041, P.R. China

Telephone: (86) 21 6120-8700 Fax: (86) 21 5213-5255

Eastman Chemical Japan Ltd.

MetLife Aoyama Building 5F 2-11-16 Minami Aoyama Minato-ku, Tokyo 107-0062 Japan

Telephone: (81) 3-3475-9510 Fax: (81) 3-3475-9515

Eastman Chemical Asia Pacific Pte. Ltd.

#05-04 Winsland House 3 Killiney Road Singapore 239519

Telephone: (65) 6831-3100 Fax: (65) 6732-4930

www.eastman.com

Material Safety Data Sheets providing safety precautions that should be observed when handling and storing Eastman products are available online or by request. You should obtain and review the available material safety information before handling any of these products. If any materials mentioned are not Eastman products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

Neither Eastman Chemical Company nor its marketing affiliates shall be responsible for the use of this information or of any product, method, or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. NO WARRANTY IS MADE OF THE MERCHANTABILITY OR FITNESS OF ANY PRODUCT, AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

Eastman and NPG are trademarks of Eastman Chemical Company. All other brands are the property of their respective owners. © Eastman Chemical Company, 2012.