Golder Associates Inc.

3730 Chamblee Tucker Road Atlanta, GA USA 30341 Telephone (770) 496-1893 Fax (770) 934-9476

REPORT ON

REMEDIAL INVESTIGATION ADDENDUM SOUTH LANDFILL CAP ASSESSMENT AND WEST END LANDFILL CONFIRMATION SAMPLING

FOR THE

ANNISTON PCB SITE (Docket No. CV-02-PT-0749-E)

Prepared for:

United States Environmental Protection Agency
Waste Management Division
Atlanta Federal Center
61 Forsyth Street SW
Atlanta, Georgia 30303

Prepared by:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, Georgia 30341

May 28, 2010

Solutia Inc.

702 Clydesdale Avenue Anniston, Alabama 36201-5328 *Tel* 256-231-8400

SENT VIA FEDERAL EXPRESS

Ms. Pamela J. Langston Scully, P.E. Remedial Project Manager United States Environmental Protection Agency, Region IV Atlanta Federal Center 61 Forsyth Street, S.W. Atlanta, GA 30303-3104

Re: Remedial Investigation Addendum - South Landfill Cap Assessment and West End

Landfill Confirmation Sampling

Remedial Investigation and Feasibility Study for Operable Unit 3

Anniston PCB Site (Docket No. CV-02-PT-0749-E)

Anniston, Alabama

Dear Ms. Langston Scully:

On behalf of Solutia Inc. (Solutia) and Pharmacia Corporation (collectively, P/S), as parties to the Partial Consent Decrees (PCD) (Docket No. CV-02-PT-0749-E), please find enclosed eight hard copies and 10 electronic copies of P/S's Remedial Investigation (RI) Addendum for the recently completed investigation and sampling activities conducted at the South and West End Landfills. This report was prepared in accordance with a meeting that was conducted between the United States Environmental Project Agency (EPA) and P/S on March 26, 2010 to discuss finalizing the RI Report and Feasibility Study (FS) for Operable Unit 3. Pursuant to this meeting, P/S agreed to conduct additional investigations at the Site to address the final data gaps noted by the EPA in order to complete the RI and FS. The investigations were to include additional sampling activities at the South Landfill and confirmation sampling at Adjacent Area 2 of the West End Landfill. This RI Addendum Report presents the methods, procedures, and findings of the investigation and sampling activities.

Please do not hesitate to contact me at 256-231-8404 with any questions or comments that you may have regarding this matter.

Sincerely,

E. Gayle Macolly

Manager, Remedial Projects

cc: Mr. Jeffery Kitchens (ADEM)

Mr. G. Douglas Jones, Esq.

Mr. Thomas Dahl

Enclosures

TABLE OF CONTENTS

Cover]	Letter		
Table o	of Cont	ents	i
SECTION	<u>ON</u>		PAGE
1.0	INTR	ODUCTION	1
2.0	SCOF	PE OF WORK	2
	2.1 2.3	South LandfillWest End Landfill	
3.0	SUM	MARY OF RESULTS	5
	3.1 3.2	South LandfillWest End Landfill	
4.0	DATA	A VALIDATION	8
5.0	CON	CLUSIONS	10
6.0	REFE	RENCES	11
			IN ORDER FOLLOWING PAGE 11
		LIST OF TABLES	
Table 1 Table 2 Table 3 Table 4	<u>!</u>	South Landfill Cap Material Observations Summary of Laboratory Results (PCBs) Summary of Laboratory Results (Non-PCBs) West End Landfill Adjacent Area 2 (AA2) Cap Material Observations	
		LIST OF FIGURES	
Figure Figure		South Landfill Cap Characterization Investigation West End Landfill Confirmation Sampling Adjacent Area 2	

May 28, 2010 Revision 0 Anniston PCB Site – Operable Unit 3 **South and West End Landfill Investigation** Page ii of ii

Solutia Inc. and Pharmacia Corporation

LIST OF APPENDICES

Appendix A Work Plan for Additional Sampling at the South and West End Landfills and

Approval letter from the EPA

Appendix B Soil Permeability Data

Appendix C Laboratory Data

Appendix D Field Forms

1.0 INTRODUCTION

On behalf of Solutia Inc. (Solutia) and Pharmacia Corporation (collectively, P/S), Golder Associates Inc. (Golder) has prepared this Remedial Investigation Addendum Report (RI Addendum Report) for Operable Unit 3 (OU-3) of the Anniston PCB Site (Site). The RI Report and associated addenda have been prepared in accordance with the requirements of the Partial Consent Decree (CD) (Docket No. CV-02-PT-0749-E) between the United States Environmental Protection Agency (EPA) and P/S (EPA, 2002). The United States District Court for the Northern District of Alabama entered the CD on August 4, 2003. The RI Report and associated addenda for OU-3 summarize the results of field investigations to characterize the Solutia plant site, the closed South Landfill, and the closed West End Landfill (collectively, Facility); describe the nature and extent of contamination; review the fate and transport of contaminants; and present a summary of the Human Health Risk Assessment (HHRA).

The OU-3 RI Report, Revision 1.0 (Golder, 2009), was submitted to the EPA on March 24, 2009. The EPA provided multiple sets of comments on the RI Report, and multiple conference calls and meetings were held between the EPA and P/S to discuss and resolve outstanding issues related to the EPA's comments. These issues were resolved during a meeting held between the EPA, P/S and the Technical Special Master on March 26, 2010. As a result of this meeting, the EPA issued its final set of comments on the RI Report, which was received by P/S on April 21, 2010. P/S responded to these comments and submitted a revised RI Report (Revision 2.0) on May 20, 2010 (Golder, 2010a).

As part of the resolution process, P/S agreed to conduct additional investigations at the Site to address the final data gaps noted by the EPA in order to complete the RI and Feasibility Study (FS). The investigations were to include additional sampling activities at the South Landfill and confirmation sampling at Adjacent Area 2 of the West End Landfill. A Work Plan for these activities dated April 6, 2010 (Golder, 2010b) was submitted to the EPA, and the EPA issued its approval of the Work Plan on April 7, 2010. The Work Plan and the EPA approval letter are included as Appendix A. P/S completed the investigation activities between April 7 and 8, 2010, in accordance with the approved Work Plan. However, P/S re-mobilized to the field on May 6, 2010 to collect a seep sample as dry conditions prevented sample collection during the April sampling event. This RI Addendum Report presents the methods, procedures, and findings of the sampling activities.

2.0 SCOPE OF WORK

2.1 South Landfill

The scope of work for the South Landfill focused on collecting data necessary to evaluate the performance of the existing cap/cover overlying the "PCB Cells" (Cells 1E, 2E, and 3E) including: 1) conducting a cap/cover thickness survey; 2) determining the permeability of the cap/cover soil materials; 3) analyzing a suspected surface water "seep" observed in the vicinity of the cells; and 4) collecting and analyzing a groundwater sample from well OWR-5D, which is located downgradient of the South Landfill. Each of these activities is described below.

Cap/Cover Thickness Survey

Prior to conducting the survey, five proposed locations at each cell (15 total) were marked in the field by surveying the center point of each cell with a global positioning system (GPS) and using a tape to measure off the other proposed locations. A stainless steel hand auger was then advanced into the existing cap/cover material to a maximum penetration depth of 24 inches below ground surface (bgs) at each of the 15 locations. Observations of cap/cover material type and thickness were recorded for each location. In some locations, auger refusal was encountered. However, prior to terminating any borings at a depth less than 24 inches bgs, additional borings were advanced offset from the original location (less than five feet from the original location). The penetrations into the cap/cover were replaced with a mixture of granular bentonite and soil cuttings. Final sampling point locations were recorded with GPS equipment. The sample locations are presented on Figure 1. The location of sample point 3E4 is shown slightly outside the boundary of Cell 3E. However, as the cell locations are approximate, all of the sample locations shown should be representative of cover soil thickness across each cell.

Cap/Cover Material Permeability Testing

Three-inch diameter, 10-inch long, thin-walled tube samplers (Shelby tubes) were used to collect three discrete and representative samples of the cap/cover material (one per cell). The samples were collected adjacent to select thickness measurement points described above at locations shown on Figure 1. In order to collect sufficient sample material for testing, the sample locations were selected from areas where the cover thickness was determined to be a minimum of 24 inches thick. The samples were collected from beneath the topsoil layer and above the waste matrix near the center of the cap/cover materials. After collecting the samples, sample locations were backfilled with granular

bentonite. The samples were submitted to a qualified geotechnical laboratory (Golder Associates Inc.) for permeability testing using American Standards for Testing Materials (ASTM) Method D5084. A confining pressure of five pounds per square inch was used while testing the samples as it is the typical value used when assessing the permeability of soils used to construct landfill covers.

Laboratory Analysis of the "Seep"

During routine inspections, Solutia personnel noticed water intermittently seeping from an area at the South Landfill just south of Cell 3E (one of the "old PCB cells") as shown on Figure 1. However, as the cell locations are approximate, it is possible that the seep is located within an area that previously received waste. Flow from the area was visually estimated to be about five gallons per minute (gpm) and appears to occur following significant precipitation events. The seep was initially presumed to be "non contact" water or surface water flowing through the landfill cover soils as the water had no visible signs of color or odor. P/S and the EPA agreed to sample the water from the seep to determine whether the water is impacted with chemical constituents.

Water exiting the seep was captured by creating a small reservoir (excavation) lined with a stainless steel bowl that was allowed to fill with water discharging from the seep area. Water was transferred from the bowl using a small in-line pump to appropriate laboratory sample containers. As water was withdrawn from the bowl through pumping, water from the seep was allowed to continuously flow into the bowl to provide sufficient liquid to fill the laboratory sample containers. An original sample and duplicate sample were collected and analyzed for the full list of Constituents of Interest (COIs) identified in the Resource Conservation and Recovery Act (RCRA) RCRA Facility Investigation (RFI) included by the EPA as Table 1 of the RI/FS Agreement for the Site (Appendix F to the Partial Consent Decree). The samples were analyzed for volatile organic compounds (VOCs) using EPA Method 8260B, semi-volatile organic compounds (SVOCs) using EPA Method 8270C, organophosphorous pesticides (OPs) using EPA Method 8141A, metals using EPA Method 6010B with mercury using EPA Method 7470A, and total polychlorinated biphenyls (PCBs) using EPA Method 8082 for Aroclor analysis and EPA Method 680 for homolog analysis. For PCBs and metals analyses, sampling included both whole water (unfiltered) and dissolved (filtered) samples. The filtered sample was collected by transferring the collected water to the sample containers using a 0.1micron in-line filter. These samples were subject to the same Quality Assurance/Quality Control (QA/QC) protocols identified in the Site-wide Quality Assurance Project Plan (QAPP, Arcadis, 2008).

Groundwater Sampling at OWR-5D

Monitoring well OWR-5D (Figure 1) was re-developed on April 6, 2010 via surging and pumping. Approximately 24 hours following re-development, submersible pumping equipment was used to low-flow purge and sample the well. Groundwater sampling included both whole water (unfiltered) and dissolved (filtered) samples. An original sample and QA/QC samples (a field duplicate, matrix spike and matrix spike duplicate) were collected for the unfiltered sample. The filtered samples were collected using a 2.0-micron in-line filter as well as a 0.1-micron in-line filter. These samples were subject to the same QA/QC protocols identified in the Site-wide QAPP. All samples were analyzed for total PCBs by Aroclors using EPA Method 8082 as well as total PCBs by homolog groups using EPA Method 680.

2.3 West End Landfill

At the West End Landfill Adjacent Area 2, P/S performed confirmation soil sampling in the vicinity of the historic composite sample AA2. AA2 was collected prior to excavating and relocating PCBcontaining soil from the area and capping the area with a soil cap, which was completed in 1996. The result from the original "8-point" composite sample (AA2) collected in this area was 1,940 milligrams per kilogram (mg/kg). Eight individual aliquot locations (labeled 1 through 8) were located in the field within reasonable proximity to the original composite sample aliquot locations for sample AA2; however, due to refusal at sample location No. 8 only seven aliquots could be collected. Final sampling point locations were recorded with GPS equipment and are shown on Figure 2. Precleaned, stainless steel hand augers were used to advance boreholes below the existing cap/cover material at each location. Both pre- and post-cap elevation survey data were used to estimate the cap thickness. Further, observations of soil color, texture and composition were used to determine the interface between the cap/cover material and the underlying in-situ soils (where possible). A composite sample was collected with each of the individual aliquots homogenized together and submitted as a single composite sample. A primary composite sample and a field duplicate were submitted to the analytical laboratory and analyzed for total PCBs by Aroclors using EPA Method 8082 as well as total PCBs by homolog groups using EPA Method 680.

3.0 SUMMARY OF RESULTS

3.1 South Landfill

Cap/Cover Thickness Survey

Fifteen locations (five at each of the three Cells: 1E, 2E, and 3E) were investigated for cap thickness and material type. The sample locations are shown on Figure 1. Nine of the 15 locations were advanced 24 inches bgs without penetrating into the underlying waste material (i.e., the cap/cover thickness was greater than 24 inches in these areas). The cap/cover material observed was generally consistent at each location, with brown and red silty clay, clayey sand or sandy clay. Hand auger refusal was encountered at six locations. At four of these locations, the cap/cover material was observed to be greater than 12 inches bgs prior to encountering auger refusal. Hand auger refusal was generally attributed to "gravel-sized" rocks/stones intermixed within the matrix of the silty-clayey residuum materials placed as final fill over the cells. Table 1 provides a summary of the cap/cover material type and thickness encountered. Waste material was not encountered at any of the sample locations. The results indicate that the cap thickness exceeds 24 inches for the majority of the area investigated. However, in some areas, the total thickness of the cap/cover could not be confirmed due to encountering auger refusal.

Cap/Cover Material Permeability Testing

Three of the cap thickness sample locations were selected for permeability testing including sample locations: 1E-1, 2E-3 and 3E-2. The permeability results for these samples ranged from 8.4 x 10⁻⁷ centimeters/second (cm/sec) to 1.8 x 10⁻⁵ cm/sec, with a geometric mean of 4.14 x 10⁻⁶ cm/sec. The soil samples were classified by the geotechnical laboratory as follows: Sample 1E-1 – low plasticity clay (CL) and Samples 2E-3 and 3E-2 – low plasticity silt (ML). The laboratory testing results are summarized on Table 1 and provided in Appendix B.

Laboratory Analysis of the "Seep"

The observed "seep" was dry at the time of the initial investigation and therefore could not be sampled. However, a few weeks following this sampling event, P/S noted that water was exiting the seep following a subsequent rainfall event. At that time, the seep provided sufficient flow to allow for sample collection. Results for the whole water (unfiltered) sample were below reporting limits or non detect for VOCs and OPs. Of the SVOCs analyzed, only 1,4-dichlorobenzene was detected at a

concentration of 1.4 "J" (estimated) micrograms per liter (µg/l) in the original sample (1.6 J µg/l for the duplicate sample). The PCB results for the unfiltered sample were 0.12 J µg/l for total Aroclors (non detect for the duplicate sample) and 0.59 J µg/l for homolog groups (0.58 J µg/l for the duplicate sample). The PCB results for the filtered sample were non detect for both total Aroclors and homolog groups. Homolog groups detected in the unfiltered sample included monochlorobiphenyl, dichlorobiphenyl, and trichlorobiphenyl, while the only Aroclor detected was Aroclor 1254. Metals results for the unfiltered sample indicate a detection of 0.13 milligrams per liter (mg/l) for barium (0.12 mg/l for the duplicate sample) and 0.19 mg/l for manganese (0.19 mg/l for the duplicate sample). The associated filtered results for this sample were 0.12 mg/l for barium and 0.17 mg/l for manganese. The laboratory results for PCBs are summarized in Table 2, while Table 3 includes results for VOCs, SVOCs, OPs, and metals. The laboratory reports are provided in Appendix C.

Groundwater Sampling at OWR-5D

Approximately 24 hours prior to sampling, monitoring well OWR-5D was re-developed using surge and pump techniques. Approximately 50 gallons of groundwater were removed resulting in a final turbidity of 185 Nephelometric Turbidity Units (NTUs). Groundwater samples were collected from OWR-5D for both whole water (unfiltered) and dissolved (filtered) samples. The well was purged prior to sampling, and the final turbidity measured after purging was less than 10 NTUs. The results for total PCBs by Aroclor were 464 J μg/l in the unfiltered sample (447 J μg/l for the duplicate sample), non detect for the 2.0-micron filtered sample, and non detect for the 0.1-micron filtered sample. Aroclors detected in the unfiltered original sample included Aroclor 1221 and Aroclor 1232. The results for total PCBs by homolog groups were 596 J μg/l for the unfiltered sample (580 μg/l for the duplicate sample), 2.6 "UJ" (estimated non detect) μg/l for the 2.0-micron filtered sample, and 0.012 UJ μg/l for the 0.1-micron filtered sample. The homolog groups detected included monochlorobiphenyl, dichlorobiphenyl, and trichlorobiphenyl. The laboratory results are summarized in Table 2, and the laboratory reports are included in Appendix C. Field sampling and instrument calibration records are provided in Appendix D.

3.2 West End Landfill

Seven individual aliquot samples were collected and homogenized to form a single composite sample. Observations from each aliquot sample location are provided in Table 4. Descriptions of the observed cover material were generally consistent at each location and included brownish red clayey silt material with some gravel size particles. Existing cover depths based on pre- and post-

construction surveys and visual observations were used to determine the depth of the aliquot samples. However, for several locations it was difficult to differentiate the interface based upon visual observations, so the survey information was used to determine the sample depth. The result of total PCBs by Aroclor for the original sample was 78 J mg/kg and 90 J mg/kg for the field duplicate sample. The Aroclors detected include Aroclor 1248, Aroclor 1254, Aroclor 1260, and Aroclor 1268. The result of total PCBs by homolog group for the original sample was 56 J mg/kg and 15 J mg/kg for the field duplicate. Each of the ten homolog groups were detected in the analysis. The laboratory results are summarized in Table 2, and the laboratory reports are included in Appendix C. The aliquot sample locations are shown on Figure 2.

4.0 DATA VALIDATION

In accordance with the Site-Wide QAPP (Arcadis, 2008), Level II data packages were requested from the laboratory for all analyses, and Level II data validation was performed for the samples analyzed. Investigation of the South Landfill included collection of groundwater samples from monitoring well OWR-5D and surface water from the seep as shown below.

Sample ID	Description	Analyses
OWR-5D	Unfiltered groundwater sample	Aroclors and homolog groups
OWR-5D Dup	Field duplicate	Aroclors and homolog groups
OWR-5D 2u	Filtered groundwater sample with 2-µm filter	Aroclors and homolog groups
OWR-5D 0.1u	Filtered groundwater sample with 0.1-μm filter	Aroclors and homolog groups
SEEP-1	Unfiltered surface water sample	Aroclors, homologs, VOCs, SVOCs, OPs, and Metals
SEEP-1 FD	Field duplicate	Aroclors, homologs, VOCs, SVOCs, OPs, and Metals
SEEP-0.1 um	Filtered surface water sample using 0.1-μm filter	Aroclors, homologs, and Metals

Holding times for OWR-5D were met for sample preparation and analysis. Aroclor samples were analyzed at multiple dilutions for the unfiltered groundwater sample and the field duplicate (Dup). Surrogate recoveries for diluted samples could not be calculated; however, surrogate recoveries were achieved for undiluted samples and quality control samples. The results for Aroclor 1232 in the unfiltered and field duplicate groundwater samples were calculated from two analytical columns and the percent difference in these calculated results exceeded 40 percent (%). Consequently, the Aroclor 1232 results were qualified as estimated "J" values.

Low level results for monochlorobiphenyl and dichlorobiphenyl were reported in the equipment blank (EB) collected for OWR-5D. Dichlorobiphenyl was reported at low level concentrations (similar to that detected in the equipment blank) for both of the filtered samples, and monochlorobiphenyl was reported in the filtered sample collected using the 2-micron in-line filter. Due to the concentrations of these homologs reported in the equipment blank, the sample results were deemed suspect and qualified as undetected at estimated reporting limits. Trichlorobiphenyl was detected in the primary unfiltered sample for OWR-5D but was not detected in the field duplicate sample. The result for trichlorobiphenyl was qualified as an estimated "J" value for the primary sample and as an estimated reporting limit for the field duplicate sample.

Holding times for the seep sample were met for sample preparation and analysis for all methods. The field blanks and method blanks did not contain target constituents. Laboratory spike recoveries were met for all parameters with the exception of ethyl parathion; however, qualification of the data is not warranted. Surrogate recoveries for tetrachloro-m-xylene and decachlorobiphenyl were achieved for the undiluted samples and quality control samples. Aroclor 1254 was detected at a low level in the primary sample, but was not detected in the field duplicate sample. The positive result was qualified as an estimated "J" value.

Investigation of the West End Landfill included collection of a composite soil sample and associated QC samples as shown below.

Sample ID Description Analyses

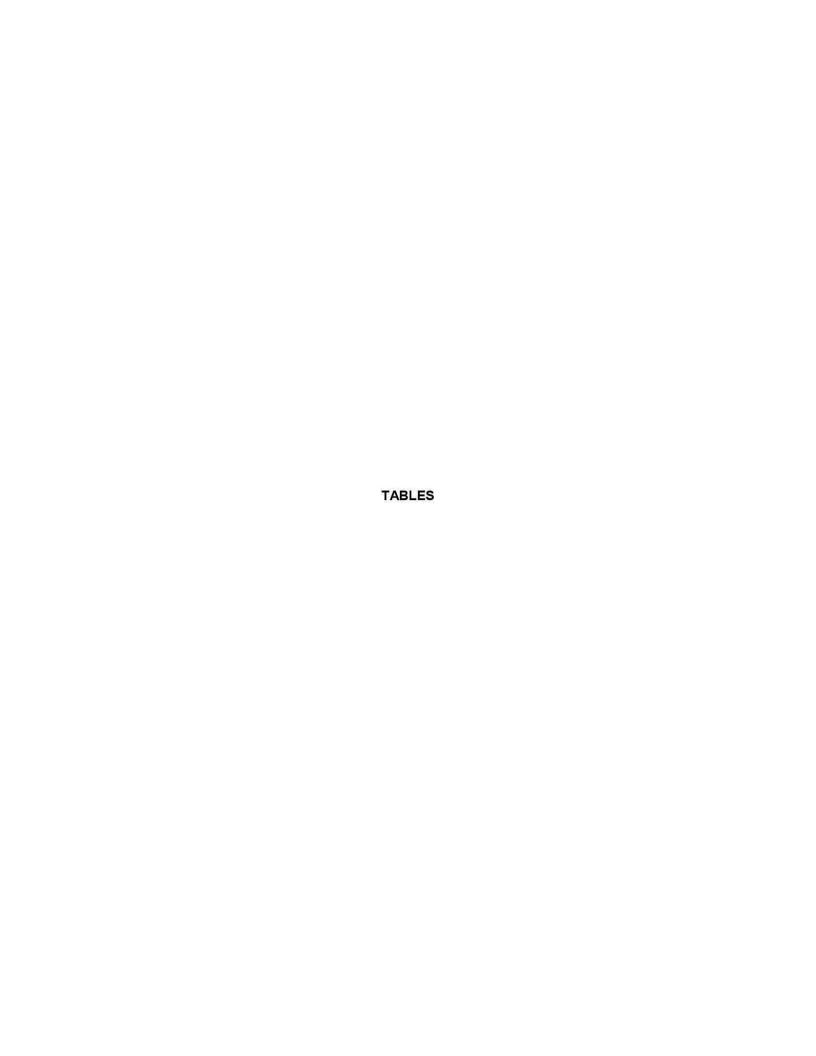
AA2-CON Composite soil sample Aroclors and homolog groups
AA2-CON-FD Field duplicate Aroclors and homolog groups

The holding times were met for sample preparation and analysis. Surrogate recoveries for tetrachloro-m-xylene were achieved for the undiluted samples and the quality control samples, and the surrogate recovery for decachlorobiphenyl could not be determined due to the presence of Aroclor 1268 in the samples. The Aroclor 1248 results for the primary and field duplicate samples had a precision greater that 50%. Both results were qualified as estimated "J" values. PCBs were detected in the primary and the field duplicate samples. With the exception of decachlorobiphenyl, the primary result and the corresponding field duplicate result had a precision greater than 50%. The positive results were qualified as estimated "J" values and undetected results were qualified as estimated reporting limits for the primary and field duplicate samples. The result for decachlorobiphenyl in sample AA2-CON was below the laboratory reporting limit and was qualified as an estimated "J" value.

5.0 CONCLUSIONS

Additional investigation activities were conducted at the South Landfill and the West End Landfill in accordance with the approved Work Plan. Findings of the investigation activities conducted at the South Landfill show that the cap/cover material was generally 24 inches thick or greater, and the cover soils consisted of low plasticity silt and clay with a mean permeability of 4.14 x 10⁻⁶ cm/sec. However, some gravel-sized material was encountered intermixed with the soil matrix that prevented a direct measurement of the cover thickness at these locations.

Analytical results of the groundwater samples (original and field duplicate) collected at OWR-5D indicated that total PCB concentrations for unfiltered samples ranged from 447 J μ g/l to 596 J μ g/l depending upon the method used to analyze the samples. The PCB concentrations for the filtered samples ranged from non detect to 2.6 UJ μ g/l.


Results for the unfiltered seep samples were non detect for VOCs and OPs, while the SVOC 1,4-dichlorobenzene was detected at a concentration of 1.4 J μ g/l for the original sample and 1.6 J μ g/l for the duplicate sample. PCB results for the unfiltered samples (original and field duplicate) ranged from non detect to 0.59 J μ g/l depending upon the method used to analyze the samples. The PCB results for the filtered sample were non detect for both total Aroclors and homolog groups. Metals results for the unfiltered sample indicate a detection of 0.13 mg/l for barium and 0.19 mg/l for manganese, with associated filtered results of 0.12 mg/l for barium and 0.17 mg/l for manganese.

PCB results for samples collected from the West End Landfill (original and duplicate sample) ranged from 15 J mg/kg to 90 J mg/kg depending upon the method used to analyze the samples. These results confirm that the high level PCB concentrations originally detected in soil at this location were removed prior to placing the soil cap/cover at the West End Landfill Adjacent Area 2.

This RI Report Addendum summarizes methods, procedures, and findings of the South and West End Landfill additional investigations conducted to address the final data gaps prior to completing the RI and FS. These findings will be further discussed as part of the FS for OU-3.

6.0 REFERENCES

- Arcadis, 2008. Site-Wide Quality Assurance Project Plan for the Anniston PCB Site (Revision 5.0), September 2008.
- Golder, 2009. Remedial Investigation for Operable Unit 3 for the Anniston PCB Site, Revision 1.0, March 2009.
- Golder, 2010a. Remedial Investigation for Operable Unit 3 for the Anniston PCB Site, Revision 2.0, May 2010.
- Golder, 2010b. Work Plan for Additional Sampling at South and West End Landfills, Remedial Investigation and Feasibility Study for Operable Unit 3, Anniston PCB Site, April 2010.
- USEPA, 2002. United States of America v. Pharmacia Corporation (p/k/a Monsanto Company) and Solutia Inc. Civil Action No. CV-02-PT-0749-E. October 2002.

MAY 2010 043-3746-OU3

TABLE 1 SOUTH LANDFILL CAP MATERIAL OBSERVATIONS ANNISTON PCB SITE - OPERABLE UNIT 3

Sample Identification	Total Boring Depth (inches)	Soil Type (USCS)	Permeability (cm/sec)	Sample Description
1E-1	24	(CL)	1.8E-05	0-24" - Red/Brown Silty CLAY
1E-2	20		1	0-20" - Brown SAND/CLAY, Gravel at 20"
1E-3	6	-	-	0-6" - Gravel
1E-4	24	u na	-	0-3" - Brown Sandy CLAY, 4-24" - Red/Brown CLAY
1E-5	24	-	-	0-24" - Red/Brown CLAY
2E-1	24	-	-	0-6" - Brown SAND/CLAY, 7-24" - Red/Brown SILT/CLAY
2E-2	14		-	0-6" - Brown SAND/CLAY, 7-14" - Red/Brown SILT/CLAY, Gravel at 14"
2E-3	24	(ML)	8.4E-07	0-5" - Brown SAND/CLAY, 6-24" - Red/Brown CLAY
2E-4	24	·-		0-3" - Brown SAND/CLAY, 4-24" - Red/Brown CLAY
2E-5	24		-	0-3" - Brown SAND/CLAY, 4-24" - Red/Brown CLAY
3E-1	24	-		0-21" - Brown CLAY/SAND, 21-24" - Light Red/Brown Silty CLAY
3E-2	24	(ML)	4.7E-06	0-24" - Light Red Silty CLAY
3E-3	13	-	-	0-13" - Brown CLAY/SAND, Gravel at 13"
3E-4	9			0-9" - Brown CLAY/SAND, Gravel at 9"
3E-5	19	_		0-6" - Brown CLAY/SAND, 7-19" - Red/Brown Silty CLAY, Gravel at 19"

Notes:

-- Samples were not collected for analysis

Refer to Figure 1 for sample locations

CL - Low Plasticity Clay ML - Low Plasticity Silt

Sample Descriptions based on field observations

MAY 2010 043-3746-OU3

TABLE 2 SUMMARY OF LABORATORY RESULTS (PCBS) ANNISTON PCB SITE - OPERABLE UNIT 3

	units	AA2-CON	AA2-CON-FD	Units	OWR-5D	Dilution	OWR-5D-DUP	Dilution	OWR-5DF 2 μm	OWR-5DF 0.1 μm	SEEP-1	SEEP-1 FD	SEEP-0.1 μm
		soil-comp	soil-comp		water		water		water	water	water	water	water
Temperature	4	3 41 0	- 11	С	18.6	+	(800)		(MW)		**	(HE)	
Н		2.55)		std	4.09	†	l es t)		U SAM		ann.	ATE:	U 2.7 /
Turbidity		222	- C	NTU	9.81	†	0 == 0x		2.44-3		1 414	(##J	Z##=)
Specific Conductivity		(##)		umhos/cm	734	†	1 2.00 13		3. 55		==	1991	
DO		4-	-	mg/L	1.74	1	(1828)		A 2520	22	550	W4/45	0.2520
ORP		9 00 3	§ ==	mV	117				1.555	- 		(125)	3 11)
PCB Aroclor Results												0)	
Aroclor 1016	mg/kg	ND	ND	μg/L	ND	10x	ND	10x	ND	ND	ND	ND	ND
Aroclor 1221	mg/kg	ND	ND	μg/L	400	25x	410	25x	ND	ND	ND	ND	ND
Aroclor 1232	mg/kg	ND	ND	μg/L	64 J	10x	37 J	10x	ND	ND	ND	ND	ND
Aroclor 1242	mg/kg	ND	ND	μg/L	ND	10x	ND	10x	ND	ND	ND	ND	ND
Aroclor 1248	mg/kg	3.3 J	5.8 J	μg/L	ND	10x	ND	10x	ND	ND	ND	ND	ND
Aroclor 1254	mg/kg	24	31	μg/L	ND	10x	ND	10x	ND	ND	0.12 J	ND	ND
Aroclor 1260	mg/kg	23	29	μg/L	ND	10x	ND	10x	ND	ND	ND	ND	ND
Aroclor 1268	mg/kg	28	24	μg/L	ND	10x	ND	10x	ND	ND	ND	ND	ND
TOTAL	mg/kg	78 J	90 J	μg/L	464 J		447 J		ND	ND	0.12 J	ND	ND
PCB Homolog Results													
Monochlorobiphenyl	mg/kg	ND	0.007 J	μg/L	460	100x	470	100x	2.4 UJ	ND	0.38	0.38	ND
Dichlorobiphenyl	mg/kg	1.3 J	0.054 J	μg/L	120	100x	110	100x	0.22 UJ	0.012 UJ	0.19	0.18	ND
Frichlorobiphenyl	mg/kg	5.5 J	0.39 J	μg/L	16 J	100x	ND	100x	ND	ND	0.017 J	0.015 J	ND
Tetrachlorobiphenyl	mg/kg	7 J	1.8 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
Pentachlorobiphenyl	mg/kg	9.4 J	3 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
Hexachlorobiphenyl	mg/kg	13 J	4.5 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
Heptachlorobiphenyl	mg/kg	12 J	3 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
Octachlorobiphenyl	mg/kg	5.9 J	1.4 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
Nonachlorobiphenyl	mg/kg	0.87 J	0.38 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
DCB Decachlorobiphenyl	mg/kg	0.56 J	0.33 J	μg/L	ND	100x	ND	100x	ND	ND	ND	ND	ND
TOTAL	mg/kg	56 J	15 J	μg/L	596 J	100	580		2.6 UJ	0.012 UJ	0.59 J	0.58 J	ND

Notes:

ND - Non Detect NTU - Nephelometric Turbidity Units
FD - Field Duplicate DO - Dissolved Oxygen

FD - Field Duplicate DO - Dissolved Oxygen

DUP - Duplicate Sample ORP - Oxidation Reduction Potential

J - Estimated value 2µm - 2 micrometer filtered sample

C - Celsius 0.1µm - 0.1 micrometer filtered sample

mg/L - milligram per liter mg/kg - milligram per kilogram μg/L - microgram per liter

umhos/cm - micromhos/centimeter

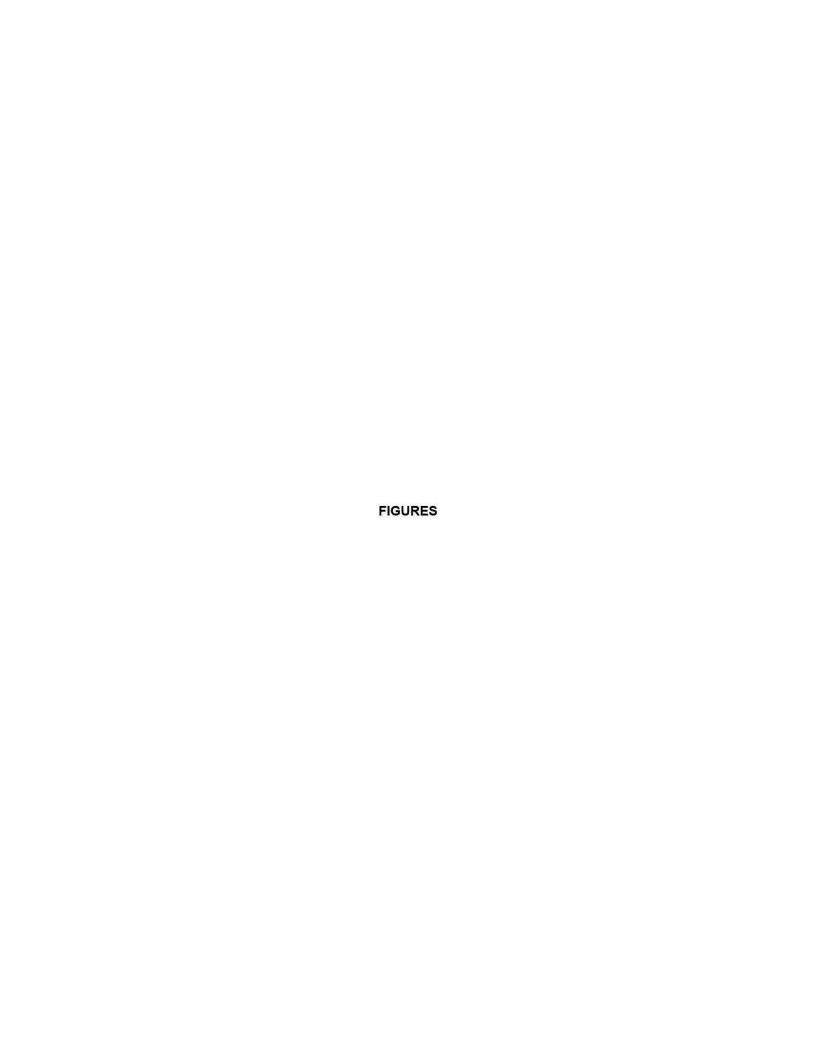
mV - millivolts

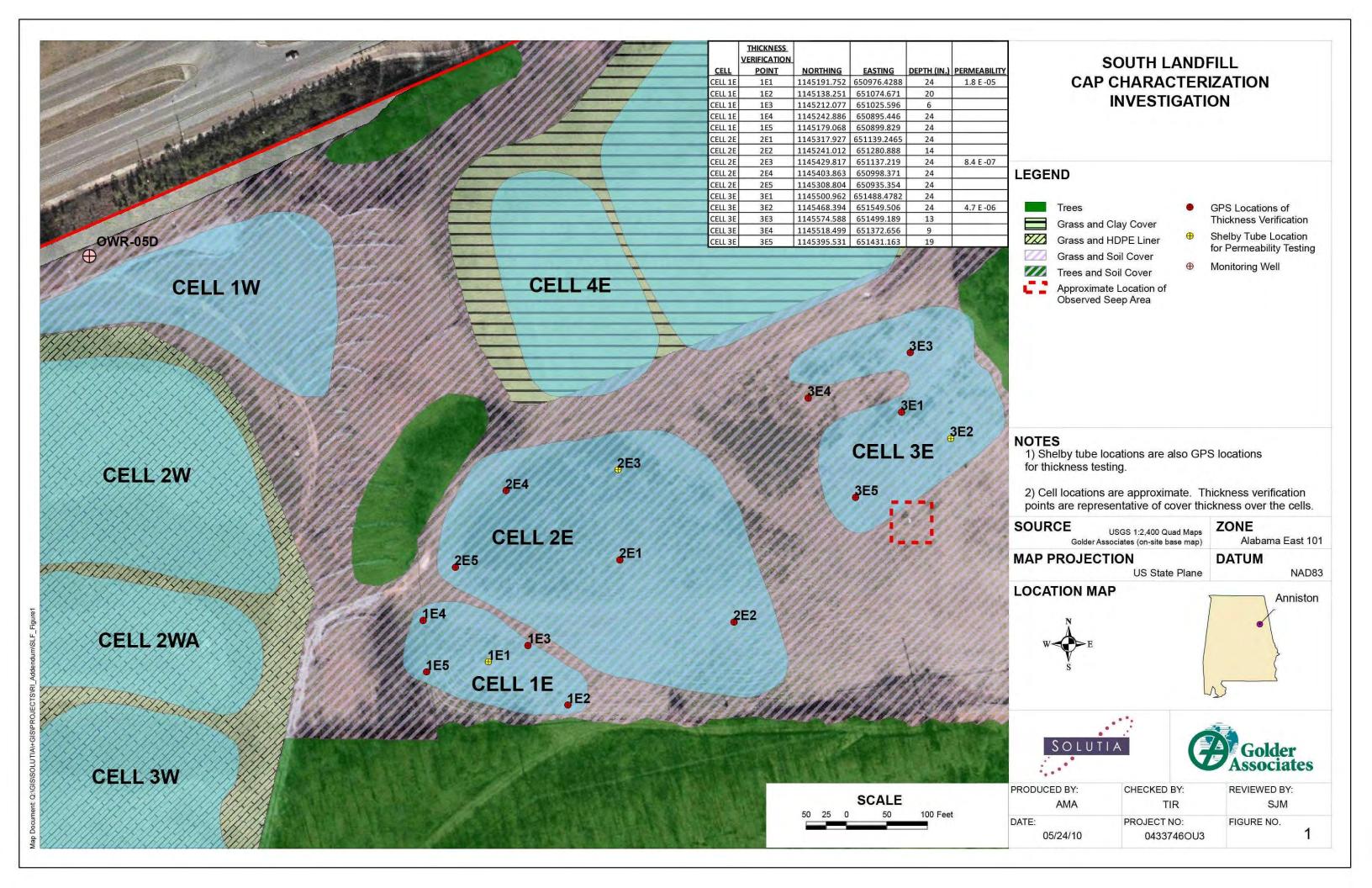
043-3746-OU3 **MAY 2010**

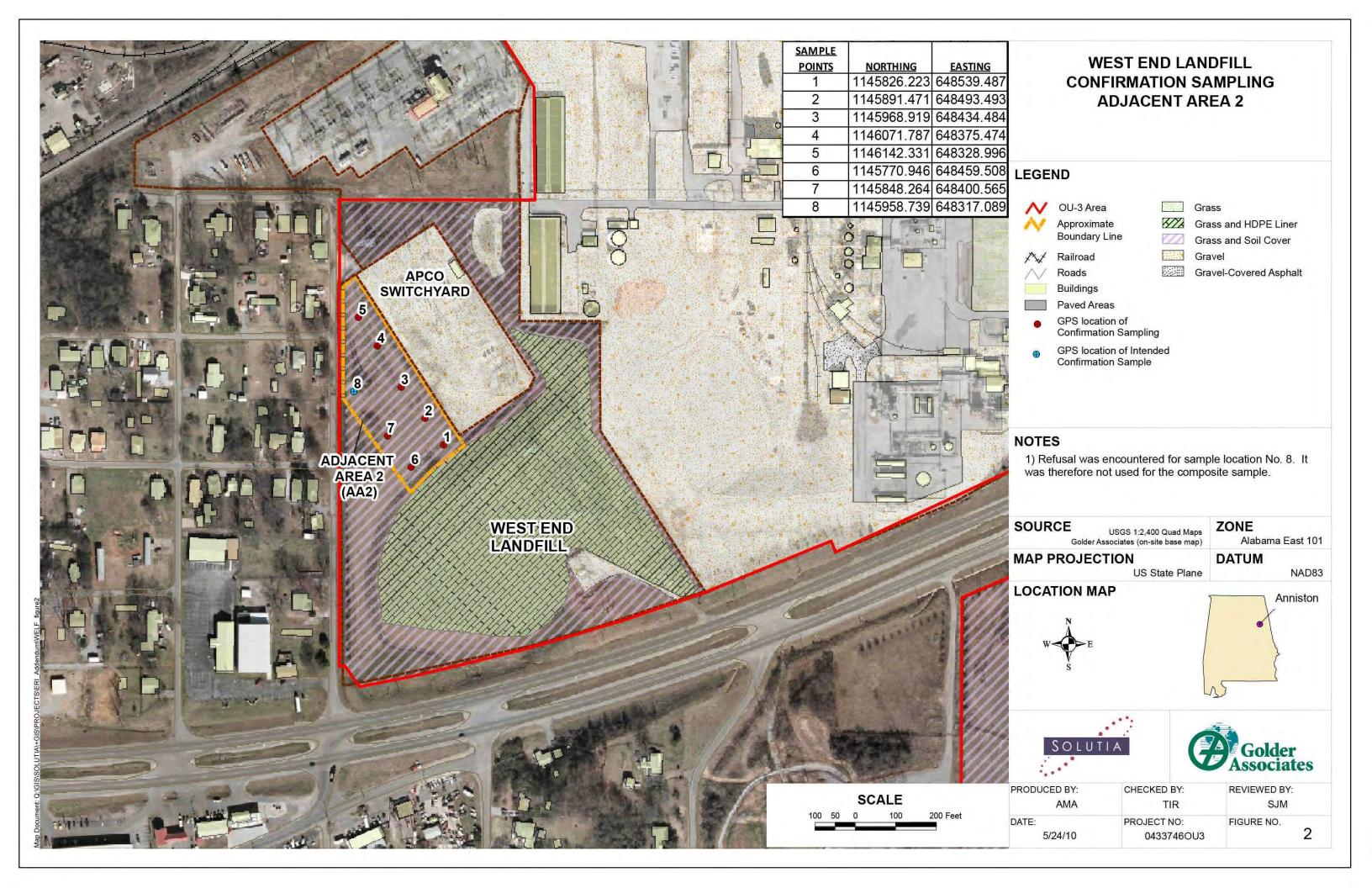
TABLE 3 SUMMARY OF LABORATORY RESULTS (NON-PCBS) ANNISTON PCB SITE - OPERABLE UNIT 3

	Units	SEEP-1	SEEP-1 FD	SEEP-0.1 μm
		water	water	water
Organophosphorous Pesticides				
Ethyl Parathion	μg/L	ND	ND	
Methyl Parathion	μg/L	ND	ND	
Tetraethyldithiopyrophosphate	μg/L	ND	ND	
Semivolatile Organic Compounds				
1,2-Dichlorobenzene	μg/L	ND	ND	()
1,4-Dichlorobenzene	μg/L	1.4 J	1.6 J	
2,4-Dichlorophenol	μg/L	ND	ND	
4-Nitrophenol	μg/L	ND	ND	
Phenol	μg/L	ND	ND	
Pentachlorophenol	μg/L	ND	ND	:
o,o,o-Triethylphosphorothioate	μg/L	ND	ND	
2,4,5-Trichlorophenol	μg/L	ND	ND	
2,4,6-Trichlorophenol	μg/L	ND	ND	
Volatile Organic Compounds	32.000			
Chlorobenzene	μg/L	ND	ND	E== 1
Isopropyl Benzene (Cumene)	μg/L	ND	ND	1
Methylene Chloride	μg/L	ND	ND	
1,1,2,2-Tetrachloroethane	μg/L	ND	ND	
Metals	77. 12010	-	1	
Arsenic	mg/L	ND	ND	ND
Barium	mg/L	0.13	0.12	0.12
Beryllium	mg/L	ND	ND	ND
Cadmium	mg/L	ND	ND	ND
Chromium	mg/L	ND	ND	ND
Cobalt	mg/L	ND	ND	ND
Lead	mg/L	ND	ND	ND
Manganese	mg/L	0.19	0.19	0.17
Nickel	mg/L	ND	ND	ND
Vanadium	mg/L	ND	ND	ND
Mercury	mg/L	ND	ND	ND
Notes:	1200	- V		L
ND - Non Detect	mg/L - milli	grams per lite	r	
FD - Field Duplicate	0.1μm - 0.1	-micron filter	ed sample	

J - Estimated value μg/L - micrograms per liter


μm - micrometers -- not tested MAY 2010 043-3746-OU3


TABLE 4
WEST END LANDFILL ADJACENT AREA 2 (AA2) CAP MATERIAL OBSERVATIONS
ANNISTON PCB SITE - OPERABLE UNIT 3


Sample Identification	Total Cover Thickness (feet)	Sample Description
AA-CONC-1	3.0	0-3" - Brownish Red Soil, 3" - Termination - Very Fine grayish white SAND
AA-CONC-2	3.5	0"-Termination - Brown red Clayey SILT - some Gravel
AA-CONC-3	3.8	0"-Termination - Brown red Clayey SILT - some Gravel
AA-CONC-4	3.1	0"-Termination - Brown red Clayey SILT - some Gravel
AA-CONC-5	2.0	0-12" - Brownish red Clayey SILT, 12" - Termination - Light Brown to Red Clayey SILT - some Gravel
AA-CONC-6	2.8	0" - Termination - Brownish red Clayey SILT - some Gravel
AA-CONC-7	3.3	0" - Termination - Brownish red Clayey SILT - some Gravel
AA-CONC-8	ND	Auger Refusal - No Observations

Notes: Cover thickness is estimated from Cover Limits map, West End Landfill, Golder Associates Inc., dated 5/09.

ND - Not Determined.

Appendix A: Work Plan for Additional Sampling a West End Landfills and Approval letter from	nt the South and n the EPA

April 6, 2010

Solutia Inc.
702 Clydesdale Avenue
Anniston, Alabama 36201-5328
Tel 256-231-8400

SENT VIA EMAIL AND FEDERAL EXPRESS

Ms. Pamela J. Langston Scully, P.E. Remedial Project Manager United States Environmental Protection Agency Atlanta Federal Center 61 Forsyth Street, S.W. Atlanta, GA 30303-3104

Re: Work Plan for Additional Sampling at the South and West End Landfills

Remedial Investigation and Feasibility Study for Operable Unit 3

Anniston PCB Site (Docket No. CV-02-PT-0749-E)

Anniston, Alabama

Dear Ms. Langston Scully:

Please find enclosed the work plan for conducting additional investigations at the Anniston PCB Site (Site) for Operable Unit 3 (OU-3). This work plan was prepared in accordance with a meeting that was conducted between the United States Environmental Protection Agency (EPA) and Pharmacia Corporation / Solutia Inc. (collectively, P/S) on March 26, 2010 to discuss finalizing the Remedial Investigation (RI) Report and Feasibility Study (FS) for OU-3. Pursuant to this meeting, P/S propose to conduct additional investigations at the Site to address the final data gaps noted by the EPA in order to complete the RI and FS. The scope of work includes conducting sampling activities at the South Landfill and the West End Landfill.

Please do not hesitate to contact me at 256-231-8404 with any questions or comments that you may have regarding this matter. Please let us know if this work plan is acceptable to the EPA.

Sincerely,

E. Gayle Macolly

Manager, Remedial Projects

cc: Mr. Jeffery W. Kitchens (ADEM)

Mr. G. Douglas Jones, Esq.

Mr. Thomas Dahl

Work Plan for Additional Sampling at the South and West End Landfills

Introduction

A meeting was conducted between the United States Environmental Protection Agency (EPA) and Pharmacia Corporation / Solutia Inc. (collectively, P/S) on March 26, 2010 to discuss finalizing the Remedial Investigation (RI) Report and Feasibility Study (FS) for Operable Unit 3 (OU-3) at the Anniston PCB Site (Site). Pursuant to this meeting, P/S propose to conduct additional investigations at the Site to address the final data gaps noted by the EPA in order to complete the RI and FS. The scope of work includes conducting sampling activities at the South Landfill "PCB Cells" (cells 1E, 2E, and 3E) and in the vicinity of sample AA2 at the West End Landfill Adjacent Area 2. A description of the proposed work is included below, and locations of the proposed work are shown on Figures 1 and 2, respectively.

South Landfill

At the South Landfill, P/S will evaluate the performance of the existing cap/cover overlying the "PCB Cells" (cells 1E, 2E, and 3E) as follows: 1) conduct a cap/cover thickness survey; 2) determine the permeability of the cap/cover soil materials; 3) analyze suspected surface water "seep" as observed in the vicinity of the cells; and 4) collect and analyze a groundwater sample from well OWR-5D downgradient of the South Landfill.

- Cap/cover thickness survey stainless steel hand auger equipment will be advanced to a maximum penetration of 24 inches into the existing cap/cover material at fifteen (15) locations (five at each of the three cells: 1E, 2E, and 3E). The proposed sample locations are shown on Figure 1. This frequency is equivalent to over one test location per acre. If waste material is encountered in any boring, the hand auger will be decontaminated prior to advancing to the next location. Observations of cap/cover material type (using the Unified Soil Classification System) and thickness will be recorded for each location. If a hole is advanced to 24 inches below ground surface and has not penetrated the cap/cover material, the thickness will be denoted as greater than 24 inches. The penetrations in the cap/cover will be replaced with a bentonite/soil mixture and tamped in place. The cuttings from the auger holes will be used in the backfill bentonite/soil mixture.
- Cap/cover material permeability testing three-inch diameter, 10-inch long, thin-walled tube samplers (Shelby tubes) will be used to collect three (3) discrete and representative samples of the cap/cover material (one per cell). The samples will be collected adjacent to select thickness survey points indicated above. The samples will be collected from beneath the topsoil layer and above the waste matrix near the center of the cap/cover materials. Samples will be submitted to a qualified geotechnical laboratory (Golder Associates Inc.) for permeability testing using American Standards for Testing Materials (ASTM) Method D5084. A confining pressure of five (5) pounds per square inch will be used while testing the samples, as the samples will be collected from an existing cover overlain with minimal soil cover. The penetrations in the cap/cover will be replaced with a bentonite/soil mixture and tamped in place.
- Laboratory analysis of the "seep" in order to collect water directly from the "seep" (approximate location shown on Figure 1), a small reservoir will be created, lined with a stainless steel bowl and allowed to fill with water discharging from the seep area. Once adequate water is collected, water will be transferred using a small in-line pump to the appropriate laboratory sample containers. As water is withdrawn from the bowl through pumping, water from the seep will be allowed to flow into the bowl to provide sufficient liquid to fill all of the laboratory containers. An

original sample and duplicate sample will be collected at this location and analyzed for the full list of Constituents of Interest (COIs) identified in the Resource Conservation and Recovery Act (RCRA) RCRA Facility Investigation (RFI) included by the EPA as Table 1 of the RI/FS Agreement for the Site (Appendix F to the Partial Consent Decree). Table 1 of the RI/FS Agreement is attached for reference. For PCBs and metals analyses, sampling will include both whole water (unfiltered) and dissolved (filtered) samples. The filtered sample will be collected by transferring the collected water to the sample containers using a filtering transfer vessel (QED FF8500) equipped with a 0.1-micron filter. The samples will be analyzed for total PCBs by Aroclors using EPA Method 8082 as well as total PCBs by homolog groups using EPA Method 680. These samples will be subject to the same quality assurance and quality control (QA/QC) protocols identified in the Site-wide QAPP. Level II data packages will be provided for each sample.

• Groundwater Sampling at OWR-5D – The well will be developed via surging and pumping prior to sampling. Approximately 24 hours following development, submersible pumping equipment will be used to low-flow purge and sample the well. Groundwater sampling will include both whole water (unfiltered) and dissolved (filtered) samples. An original sample and duplicate sample will be collected for the unfiltered sample. Filtering of samples will be conducted using a 2.0-micron filter as well as a 0.1-micron filter. These samples will be subject to the same QA/QC protocols identified in the Site-wide QAPP. The samples will be analyzed for total PCBs by Aroclors using EPA Method 8082 as well as total PCBs by homolog groups using EPA Method 680. A level II data package will be provided for this sample.

West End Landfill

At the West End Landfill Adjacent Area 2, P/S will perform composite soil sampling in the vicinity of the historic composite sample AA2 to collect a confirmation sample following the prior excavation and capping of PCB-containing soil in this area. The result from the original sample collected in this area was 1,940 milligrams per kilogram (mg/kg). The eight individual aliquot locations from the composite sample (shown on Figure 2) will be located in the field within reasonable proximity to the original locations of the sampling points for AA2. Care will be taken to assure samples are collected from soils below the existing cap/cover material. Both pre- and post-cap elevation survey data are available and will be used to estimate the cap thickness at each of the sample locations. Further, observations of soil color, texture and composition will be used to determine the interface between the cap/cover material and the underlying in-situ soils. A composite sample of the area will be collected with each of the individual aliquots homogenized together and submitted as a single composite sample. The composite sample (original and duplicate) will be submitted to an analytical laboratory and analyzed for total PCBs by Aroclors using EPA Method 8082 as well as total PCBs by homolog groups using EPA Method 680. A level II data package will be provided for this sample.

General

While implementing the above characterization activities the following general provisions will be adhered to as applicable to each of the activities:

- The Site-wide Quality Assurance Project Plan, Revision 5.0, will be adhered to throughout the field effort (September 2008).
- The OU-3 Field Sampling Plan, Revision 2.0, will be adhered to throughout the field effort (October 2005).
- The Site-wide Health and Safety (H&S) Plan will be adhered to throughout the field effort. H&S
 meetings will be held daily for all members of the field team (June 2004).
- Proper personal protective equipment (PPE) (e.g., nitrile gloves) will be worn to limit the potential
 of direct contact with impacted media during the above-described intrusive activities.

- All equipment (i.e., mechanized or hand tools) will be decontaminated following contact with potential impacted media.
- Generation of soil investigation derived waste (IDW) is not anticipated. Purge water IDW will be contained during well purging/sampling and transported to the carbon treatment area. Water will be treated through the carbon and discharged to the on-Site waste water discharge system.

Schedule and Reporting

Characterization investigation field work is scheduled to commence Wednesday, April 7th and continue through Thursday, April 8, 2010. Prior to completing this work, representatives of P/S will be on Site Tuesday, April 6th to develop well OWR-5D in advance of the sampling to be conducted on April 7th. P/S will coordinate EPA oversight as required during the activities. As per the Site-Wide QAPP, level II data packages will be requested from the laboratory for all analyses, and level II data validation will be performed for the samples analyzed as described herein. Upon completion of the data validation, a report will be prepared presenting the findings of the characterization investigation and will be provided to EPA as a RI Report Addendum. The report will include a description of the work performed, tabulated cap thickness summary and analytical results, a summary of the data validation, an interpretation of the results, and recommendations for further action, if necessary. The RI Report Addendum will be submitted to the Agency no later than 30 days following receipt of the validated laboratory reports. P/S intend to analyze the samples using a rush turn-around schedule such that P/S can conduct a conference call with the EPA as soon as practical following completion of the field work to reach agreement regarding completion of the above-described work activities and technical approach for completing the FS Report in accordance with the schedule previously established by the EPA.

TABLE 1 POTENTIAL CONSTITUENTS OF CONCERN

Organophosphorous Pesticides

Parathion

Methyl parathion

Tetraethyldithiopyrophosphate (Sulfotepp)

Semivolatile Organic Compounds

1.2-Dichlorobenzene (o-Dichlorobenzene)

1.4-Dichlorobenzene (p-Dichlorobenzene)

2.4-Dichlorophenol

Para-nitrophenol (4-Nitrophenol or PNP)

Polychlorinated biphenyls (PCBs)

Phenol

Pentachlorophenol

2.4.5-Trichlorophenol

2,4,6-Trichlorophenol

o.o.o-Triethylphosphorothioate

Volatile Organic Compounds

Chlorobenzene

Isopropyl benzene (Cumene)

Methylene chloride

1.1.2.2-Tetrachloroethane

Metals

Arsenic

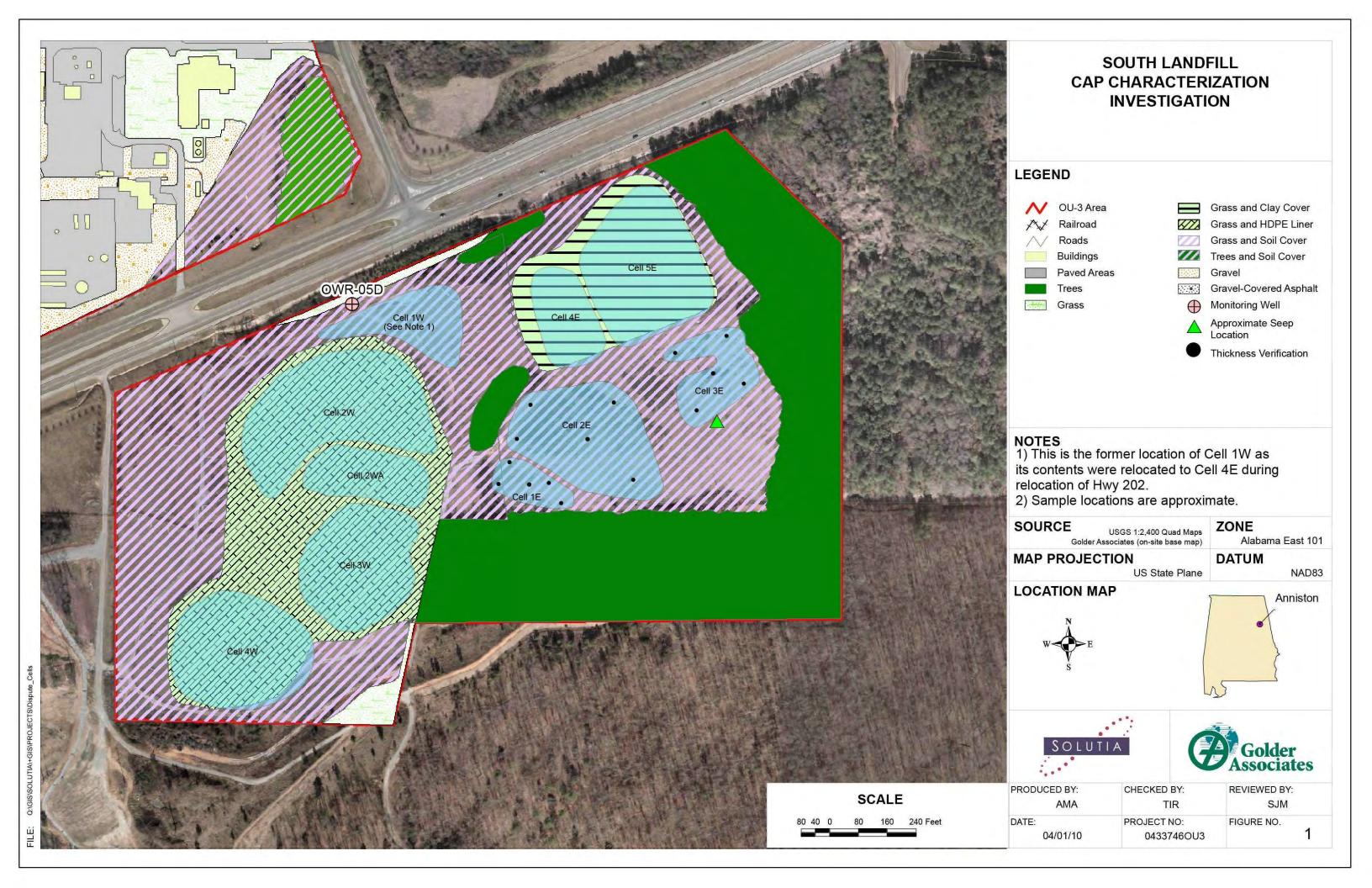
Barium

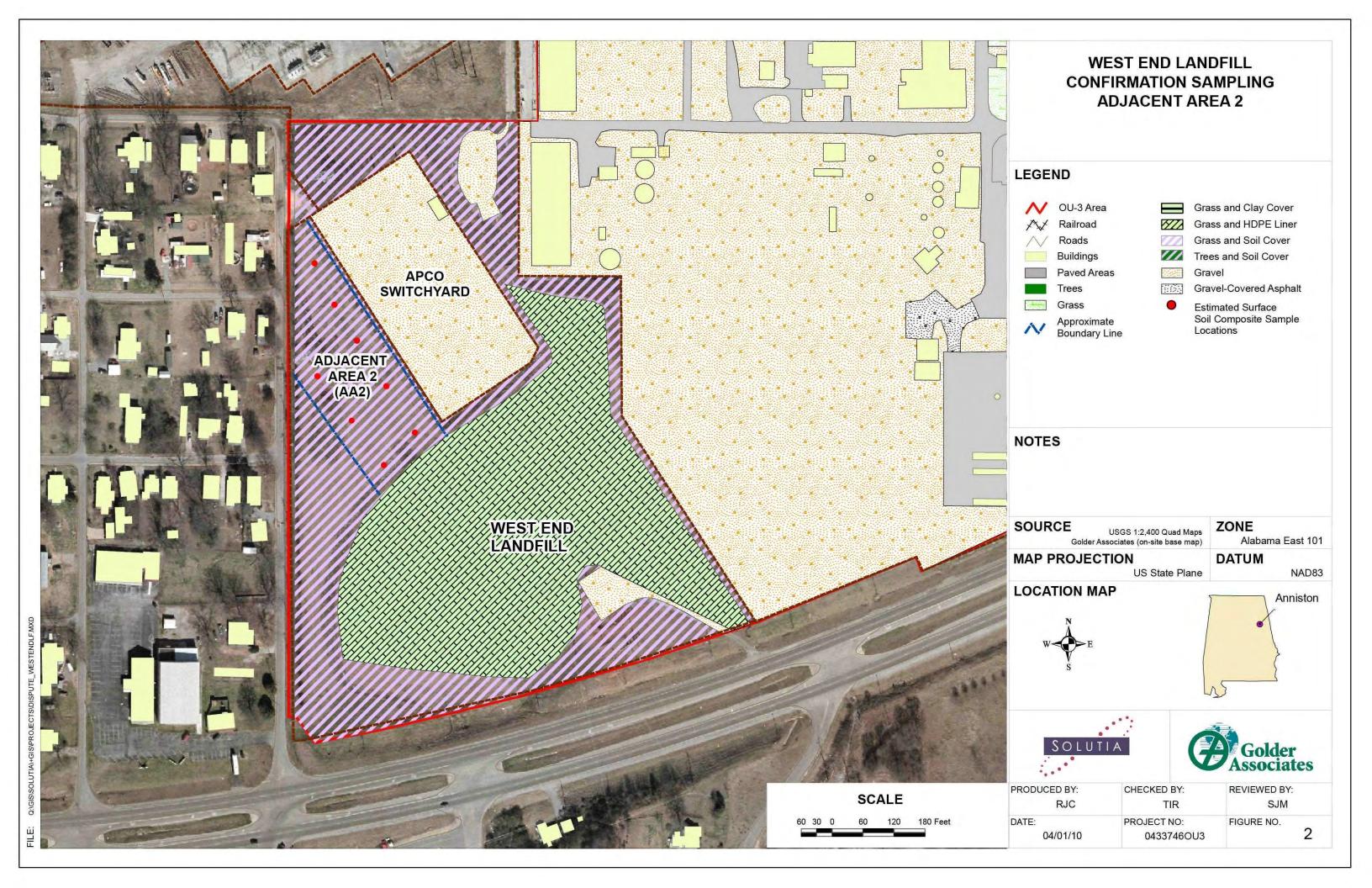
Beryllium

Cadmium

Chromium

Cobalt


Lead


Manganese

Mercury

Nickel

Vanadium

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4 ATLANTA FEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960

April 7, 2010

4SD-SRB

Ms. E. Gayle Macolly Manager, Remedial Projects Solutia, Inc. 702 Clydesdale Avenue Anniston, Alabama 36201-5328

SUBJ:

Work Plan for Additional Sampling at the South and West End Landfills

Remedial Investigation/Feasibility Study Reports

Operable Unit 3, Anniston PCB Site, Anniston, Alabama

EPA CERCLA ID

ALD000400123

EPA RCRA ID

ALD004019048

Dear Ms. Macolly:

The U.S. Environmental Protection Agency (EPA) approves of the Work Plan for Additional Sampling at the South and West End Landfills dated April 6, 2010, required to complete the Remedial Investigation and Feasibility Study for Operable Unit 3 at the Anniston PCB Site, Anniston, Alabama. If you have any questions or concerns, please contact me at (404)562-8935.

Sincerely,

Pamela J. Langston Scully, P.E.

Remedial Project Manager

Superfund Remedial Branch

cc:

Ms. Julie Peshkin, Monsanto

Mr. G. Douglas Jones, Esq.

Mr. Thomas Dahl

Mr. Bertrand Thomas, TA

Mr. David Baker, CAG

Mr. William Weinischke, USDOJ

MAY 2010

SOLUTIA/OU-3 FEASIBILITY STUDY/AL SUMMARY OF SOIL DATA

			Soil	Natural			rberg			Grain Size Distributio	n	Сотра			2.503.43			Additional
Sample Identification	Sample Type	Sample Depth	Classi- fication	Moisture %	Limits				% Finer No. 4	A 1 TO SEC. 10 1	% Finer .005	Maximum Dry Density	Optimum Moisture	Gs	Unit Weight Moisture Dry		Permeability (cm/sec)	Tests Conducted
					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	%	224	%	(lb/cuft)	(can see)	(See Notes)
1E-1	UD	4"-14"	(CL)	19.5	A	50	W		- X		-		ja je	2.80	19.5	107.2	1.8E-05	-
2E-3	UD	4"-14"	(ML)	28.9		S.		L				Total		2.80	28.9	93.0	8.4E-07	
3E-2	UD	4"-14"	(ML)	13.7	- 4	8	£		1 2					2.78	13.7	113.5	4.7E-06	
								_										
	-													-				
														-				
	7-1											-						
	4																	
							-											
	m											7 5			T		- 1	

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL) PLASTICITY INDEX (PI)

LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs)

MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

P = pH

* = Un-testable

FLEXIBLE WALL PERMEABILITY ASTM D 5084

METHOD D, CONSTANT RATE OF FLOW

PROJECT TITLE	SOLUTIA/OU-3 FEASIBILITY STUDY/AL 043-3746-OU3						
PROJECT NUMBER							
SAMPLE ID	1E-1	4"					
SAMPLE TYPE	UD						

Board #	4
Flow Pump	1
Flow Pump Speed	2
Technician	TW

COMMENTS

Sample Data, Initial		1		Sample Data, Final					
Height, inches	2.929	B-Value, f	0.97	Height, inches	2.918			Sample	Sample
Diameter, inches	2.852	Cell Pres.	85.0	Diameter, inches	2.863	WATER CONTENT	S	Initial	Final
Area, cm²	41.22	Bot. Pres.	80.0	Area, cm ²	41.53	Wt Soil & Tare, i	g	629.14	650.80
Volume, cm ³	306.63	Top Pres.	80.0	Volume, cm ³	307.84	Wt Soil & Tare, f	g	526.52	534.59
Mass, g	629.14	Tot. B.P.	80.0	Mass, g	642.80	Wt Tare	g	0.00	8.36
Moisture Content, %	19.49	Head, max.	95.66	Moisture Content, %	22.08	Wt Moisture Lost	g	102.62	116.21
Dry Density, pcf	107.15	Head, min.	95.66	Dry Density, pcf	106.73	Wt Dry Soil	g	526.52	526.23
Spec. Gravity	2.803	Max. Grad.	12.91	Volume Solids, cm ³	187.84	Water Content	%	19.49%	22.08%
Volume Solids, cm ³	187.84	Min. Grad.	12.91	Volume Voids, cm3	119.99				
Volume Voids, cm ³	118.78			Void Ratio	0.64				
Void Ratio	0.63			Saturation, %	96.9%	DESCRIPTION	111		
Saturation, %	86.4%					Reddish Brown, SIL	TY CLAY,	and medium to fine sand,	little fine gravel.

	TIME FUNCTIONS, SECONDS												
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)	
04/09/10	40277	9	45	21.3	0	0	0	0	1.36	95.66	12.91	1.8E-05	
04/09/10	40277	9	50	21.3	5	5	300	300	1.36	95.66	12.91	1.8E-05	
04/09/10	40277	9	55	21.3	5	10	300	600	1.36	95.66	12.91	1.8E-05	
04/09/10	40277	10	0	21.3	5	15	300	900	1.36	95.66	12.91	1.8E-05	*
04/09/10	40277	10	5	21.3	5	20	300	1200	1.36	95.66	12.91	1.8E-05	*
04/09/10	40277	10	10	21.3	5	25	300	1500	1.36	95.66	12.91	1.8E-05	*
04/09/10	40277	10	15	21.3	5	30	300	1800	1.36	95.66	12.91	1.8E-05	*

^{*}TRANSCRIBED FROM ORIGINAL DATA SHEETS

PERMEABILITY REPORTED AS ** 1.8E-05 cm/sec **

PERMEANT: Deaired Tap Water

DATE 4/9/10

CHECK

REVIEW

FLEXIBLE WALL TRIAXIAL PERMEABILITY ASTM D 5084

METHOD C, FALLING HEAD W/INCREASING TAIL WATER PRESSURE

PROJECT PROJECT		SOLUTIA/ 043-3746-0	/OU-3 FEASIBILITY STUDY/AL OU3			Using Pipettes Only YES Using Pipettes & Burettes NO			NO	CO	ation.				
SAMPLE ID		2E-3			BOARD# 10		TECH								
SAMPLE T	YPE	UD				CELL#	10 DATE		4/16/10					<u> </u>	
ample Dat	a, Initial														
Height, inches		2.920					Sample Da	ta, Final			Water Con	tents	Initial	Final	
Diameter, inches		2.849	B-Value,f 1.00			Height, inches 2.974				Wt soil&tare, i			586.02	612.83	
Area, cm^2		41.13	Cell Pres 85.0		Diameter, inches			2.858	Wt soil&tare, f			454.53	462.56		
Volume, cm^3		305.04	Bot. Pres. 82.0			Area, cm^2 41.39			41.39	Wt Tare			0.00	8.26	
Mass, g 58		586.02	Top Pres. 80.0			Volume, cm^3 312.65			Wt Moisture Lost			131.49	150.27		
Moisture Content, % 28.		28.93		Head, cm	140.68	Mass, g 604.88						454.53	454.30		
Dry Density, pcf		92.98		Max. Grad.	21.86	Moisture Content %			33.08	Water Content			28.93%	33.08%	
Spec. Gravity 2.804			Min. Grad.	18.67		Dry Density, pcf		90.72							
Volume Solids, cm^3 162.10		162.10		Max. E.S.	5.00				99.9%	DESCRIPTION Yellowish			and Reddish Brown, CLAYEY SILT,		
Volume Voids, cm ³ 142.94		142.94		Min. E.S.	3.00	Inflow Volume per (1 cc)			1.00			and mediun	to fine sand.	V.	
Void Ratio		0.88	-			Outflow Volume per (I cc) 1.00									
Saturation		92.0%				PERMEANT: Deaired Tap Water					USCS	(ML)			
TIME FUNCT		ON	REAL	DINGS		TIME IN MINUTES & SECONDS						VOI	UME	PERMEABILITY	
DATE	HOUR	MIN	Inflow	Outflow	Temp.	dt	dt	dt, acc	Head	(H1/H2)	Gradient	Inflow	Outflow	@ 20 Degrees C	
DITTE	Hook	LVIII.	(cc)	(cc)	remp.	(min)	(sec)	(sec)	(cm)	(inc.)	Criticin	(cc)	(cc)	(cm/sec)	
04/16/10	10	6	0.0	25.0	21.3	0.0	0.0	0	165.10	(inc.)	21.86	0.00	0.00	0.0	
04/16/10	10	38	1.8	23.2	21.3	32.0	1920	1920	161.59	1.02	21.39	1.80	1.80	1.0E-06	
04/16/10	11	34	4.5	20.4	21.3	56.0	3360	5280	156.23	1.03	20.68	2.70	2.80	8.9E-07 *	
04/16/10	12	20	6.6	18.3	21.3	46.0	2760	8040	152.14	1.03	20.14	2.10	2.10	8.6E-07 *	
04/16/10	13	54	10.6	14.3	21.3	94.0	5640	13680	144.34	1.05	19.11	4.00	4.00	8.3E-07 *	
04/16/10	14	39	12.3	12.6	21.3	45.0	2700	16380	141.02	1.02	18.67	1.70	1.70	7.7E-07 *	
04/10/10	24	32	12,5	12.0	21.5	43.0	2700	10300	141.02	1.02	10.07	1.70	1.70	7.7 B -07	
						1 1									
				1 1		1 1									
						1									
				1 1		1 1									
	Inflow Rat	e	0.0008			1 4					P	ERMEABI	LITY REPO	RTED AS 8.4E-07 cm/se	
	Outflow Ra	-	0.0008												
	Outflow/In		1.01											DATE 4/16/10	
		and the management of		1										CHECK	
*TRANCO	RIBEN ED	OM ORIGI	VAL DATA	SHEETS										REVIEW	
TAMES C.	MDED FR	on onden	TAL DATA	OHER 13										ALC: TEN	

FLEXIBLE WALL PERMEABILITY **ASTM D 5084**

METHOD D, CONSTANT RATE OF FLOW

SOLUTIA/OU-3 FEASIBILITY STUDY/AL PROJECT TITLE 043-3746-OU3 PROJECT NUMBER 4" SAMPLE ID 3E-2 SAMPLE TYPE UD

Board # 5 Flow Pump 2 Flow Pump Speed 4 TW Technician

COMMENTS

Sample Data, Initial

Height, inches Diameter, inches Area, cm² Volume, cm3 Mass, g Moisture Content, % Dry Density, pcf Spec. Gravity Volume Solids, cm³ Volume Voids, cm3 Void Ratio Saturation, %

B-Value, f 2.949 0.97 2.858 Cell Pres. 85.0 41.39 Bot. Pres. 80.0 310.02 Top Pres. 80.0 641.08 Tot. B.P. 80.0 13.69 Head, max. 89.33 113.50 Head, min. 89.33 2.777 Max. Grad. 11.90 203.05 Min. Grad. 11.90 106.97 0.53

72.2%

Sample Data, Final Height, inches 2.956 Diameter, inches 2.846 41.04 Area, cm2 Volume, cm3 308.15 Mass, g 658.63 Moisture Content, % 16.80 Dry Density, pcf 114.18 Volume Solids, cm3 203.05 Volume Voids, cm3 105.10 Void Ratio 0.52 Saturation, % 90.2%

Sample WATER CONTENTS Initial 641.08 Wt Soil & Tare, i Wt Soil & Tare, f 563.88 Wt Tare 0.00 Wt Moisture Lost 77.20 g Wt Dry Soil 563.88 g 0/0 13.69% Water Content

Sample Final 666.47 571.79 8.31 94.68 563.48 16.80%

Flow Pump Rate

2.35E-03 cm³/sec

USCS

(ML)

DESCRIPTION

Yellowish and Reddish Brown, CLAYEY SILT, and medium to fine sand, little fine gravel.

		TIM	E FUNCTIO	ONS, SECON	NDS			dP					
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)	
04/09/10	40277	9	55	21.3	0	0	0	0	1.27	89.33	11.90	4.7E-06	
04/09/10	40277	10	0	21.3	5	5	300	300	1.27	89.33	11.90	4.7E-06	
04/09/10	40277	10	5	21.3	5	10	300	600	1.27	89.33	11.90	4.7E-06	
04/09/10	40277	10	10	21.3	5	15	300	900	1.27	89.33	11.90	4.7E-06	*
04/09/10	40277	10	15	21.3	5	20	300	1200	1.27	89.33	11.90	4.7E-06	*
04/09/10	40277	10	20	21.3	5	25	300	1500	1.27	89.33	11.90	4.7E-06	*
04/09/10	40277	10	25	21.3	5	30	300	1800	1.27	89.33	11.90	4.7E-06	*

*TRANSCRIBED FROM ORIGINAL DATA SHEETS

PERMEABILITY REPORTED AS ** 4.7E-06 cm/sec **

PERMEANT: Deaired Tap Water

DATE 4/9/10 CHECK REVIEW

	,,,					т													~								•								~~~~	 	
	A	G(ss	oc oc	er iai	tes	5	 	TEST		Sample type	Water Content	Atterberg Limits	- #200 Sieve	Hydrometer & Sieve	Unit Weight	Specific Gravity	Proctor (Modified)	Unconfined Compression*	Triaxıal U/U*	Triaxial C/U•	Oirect Shear*	Permeability (Rioid Wall)	Consolidation	Swell*	Expansion Index	pH Level	Organic Octional	Carbonate Content									
_OG IN/	LOG	OUT					TEST	METHOD																:													
IN ATE BY	O DATE	UT I by		SAMP		7	۲	DTI			· ::		, i .						:			: :- :						· .						. :	• :	6=5psi	
48 A/2	7/12	_	IE-	NUMBI	EK	-		PTH Ced		T	29	Ť	†	T	П	<u> </u>		Τ.	····	<u> </u>	72	7	-	<u></u>	- 	- 	-	†	Ť		Ť			Ţ		Hoadh wil	4
		_	1E- 2E 3E- 2E	-/-		_		4		7		\top	λ	07	1	25	7 (2)	b -				Ē.	\vdash		\dashv	+		+-				1	+-	 		Handle will cantton, L All Stomp samples ae-1 defective	Qef
+18 MC	4/12	903	312.	- 2		ı	+4 6	593		1	X X								-			Ø							-							All SAMP	11
1/14 DA	4/19	8F	26	-3			f	<i>v</i>		Τ	R											3														JAMAKO RE-	1
	ļ.,		ļ			: :		. :		· · ·						: :		<u> </u>				. . -	ļ				<u> </u>	1	ļ: 				ļ	ļ		defective a	
	ļ		<u> </u>			-			_	\dashv	+	+	\perp	-				 			- -	-	-		-		+-			$\vdash \vdash$	-			<u> </u>			-
						+			\dashv	_	+	+	+	+	\vdash	-	+					-j-	┼-	\vdash	\dashv	+	+	┼	\vdash	-+	+			+-	$\vdash \dashv$		
	ļ					+			-	+	+	+	+	+			+		H		+		╁┈	╁─┼		+	+	╁		-	-		╁				
	1			٠		-					十		+	1					:		_	1.		1. 1			1	+	-				 	<u>.</u>			
				·																			Ė														
																															_						
	ļ					_				\dashv		_	4_	<u> </u>			ļ.,	<u>L</u>					<u> </u>		_			<u> </u>				_		<u> </u>	Щ		
					.:-								- -	ļ	<u>. </u>	<u> </u>			-	-	_ _		ļ			+	ļ.,	1-		<u> </u>		.	ļ.,	ļ	Ш		
			· · · · · · · · · · · · · · · · · · ·					<u> </u>			4		-				·						-		• :	_	-	1:	j. '				 	Ë			·
					.	+						+	+-			-	╁┈		-				┼			+	-	+			+		┪		\vdash	=	
						_				十	+	+	+	\vdash			<u> </u>					+	\vdash		_ -		+-	+-	$\vdash \dashv$	\vdash	_ -		1				
-						_			1	1		-	+			+	1		-	-	\top		-			+	+-	 -		-	+		1	 			•
								:				-				1	-				77	 	1			1		†			十			<u> </u>			
											\perp																										
			·			$\bot \!\!\! \bot$			[\perp											<u> </u>					
					·	_	-		_	\downarrow	\perp	\perp		4_			ļ				_	_					\perp	<u> </u>		L	_		ļ 	<u> </u>	_		
	 		<u> </u>	 -		_					+	+	+	 		- -	 -				-	<u> </u>	<u> </u>				 	ļ	 		+	 -	 	<u> </u>		: : · . · ·	
	1		- i - i i		<u> </u>		: : :	···		*		<u>: </u>	1.:	انـــا			1.	L.: {	· .					··		:	Ŀ.	} .	l . : l	I. " I.]			:	· ·

Job Number 04 5-5+46-003
Job Name 501411A FOU 1 RESIDENTAL/AL OU-3 FEASIBILITY STUDYIAL

Golder Associates, Inc.

3730 Chamblee Tucker Road Atlanta, Georgia 30341 Telephone: (770) 493-4280 Fax: (770) 492-8233

Test Completed
Results sent to client

ANALYTICAL REPORT

Job Number: 680-56559-1

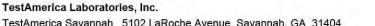
Job Description: Anniston Landfill Site

For:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, GA 30341

Attention: Mr. Tim Richards

Lidya gricia


Approved for release Lidya Gulizia Project Manager I 4/20/2010 5:37 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
04/20/2010
Revision: 1

cc: Mr. Steve Moeller

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LA000244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com

Job Narrative 680-56559-1 / Revised Report (4/20/10)

Receipt

All samples were received in good condition within temperature requirements.

GC Semi VOA

Method(s) 8081A_8082: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: Field Blank-1 (680-56559-6). These results have been reported and qualified.

Method(s) 8081A_8082: Sample OWR-5D (680-56559-1 MS), OWR-5D (680-56559-1 MSD) was diluted due to the abundance of target analyte. As such, surrogate and spike recoveries are not reported.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Comments

The report was revised on April 14, 2010 to report additional dilutions for samples OWR-5D (680-56559-1) and OWR-5D-DUP (680-56559-4) for PCB-1221 results estimated (flagged E) in the initial analysis of the samples.

The report was further revised on April 14, 2010 to correct the PCB reporting limits on the aqeuous samples which were erroneously reported at an incorrect reporting limit based on the final sample volume.

The report was again revised on April 20, 2010 per client request to add Arochlor 1268 to the target reporting list for Method 8082.

Results for Method 680 PCB Homolog results will be submitted following completion in the report for job series 680-56559-2.

METHOD SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-1

Description	Lab Location	Method	Preparation Method	
Matrix: Water	_			
Organochlorine Pesticides & PCBs (GC)	TAL SAV	SW846 8081	A_8082	
Liquid-Liquid Extraction (Continuous)	TAL SAV		SW846 3520C	

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-1

Method	Analyst	Analyst ID
SW846 8081A_8082	Smith, Crystal	CAS

SAMPLE SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-56559-1	OWR-5D	Water	04/07/2010 1650	04/08/2010 1020
680-56559-1MS	OWR-5D	Water	04/07/2010 1650	04/08/2010 1020
680-56559-1MSD	OWR-5D	Water	04/07/2010 1650	04/08/2010 1020
680-56559-2	OWR-5DF 2u	Water	04/07/2010 1650	04/08/2010 1020
680-56559-3	OWR-5DF 0.1u	Water	04/07/2010 1650	04/08/2010 1020
680-56559-4	OWR-5D-DUP	Water	04/07/2010 1650	04/08/2010 1020
680-56559-5	EB-1	Water	04/07/2010 1430	04/08/2010 1020
680-56559-6	Field Blank-1	Water	04/07/2010 1600	04/08/2010 1020

SAMPLE RESULTS

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID:

OWR-5D

Lab Sample ID:

680-56559-1

Client Matrix:

Water

Date Sampled: 04/07/2010 1650

Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pestic	ides & PCBs (GC)
----------------------------------	------------------

Method: Preparation:

8081A_8082 3520C

Analysis Batch: 680-165500

Instrument ID: Initial Weight/Volume: SGJ 1010 mL

Dilution:

Prep Batch: 680-165308

Final Weight/Volume:

10 mL 2 uL

Date Analyzed: Date Prepared:

04/12/2010 2144 04/09/2010 1703 Injection Volume: Result Type:

PRIMARY

Analyte	Result (ug/L)	Qualifier	MDL	RL
PCB-1016	<9.9		0.70	9.9
PCB-1221	200	Εp	2.8	20
PCB-1232	64		1.1	9.9
PCB-1242	<9.9		1.8	9.9
PCB-1248	<9.9		3.6	9.9
PCB-1254	<9.9		2.6	9.9
PCB-1260	<9.9		2.0	9.9
PCB-1268	<9.9		2.6	9.9

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	0	D	35 - 120
DCB Decachlorobiphenyl	0	D	14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5D

Lab Sample ID: 680-56559-1 Date Sampled: 04/07/2010 1650 Client Matrix: Water Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: 8081A_8082 Preparation: 3520C

Dilution:

04/12/2010 2144 Date Analyzed:

04/09/2010 1703 Date Prepared:

Analysis Batch: 680-165500

Prep Batch: 680-165308

Instrument ID:

Initial Weight/Volume:

SGJ 1010 mL

Final Weight/Volume: 10 mL Injection Volume: 2 uL

Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 0 D 35 - 120 DCB Decachlorobiphenyl 0 D 14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID:

OWR-5D

Lab Sample ID:

680-56559-1

Client Matrix: Water Date Sampled: 04/07/2010 1650

Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pestic	ides & PCBs (GC)
----------------------------------	------------------

Method: Preparation:

Dilution:

8081A_8082

3520C

04/13/2010 1328

Date Analyzed:

04/09/2010 1703 Date Prepared:

Analysis Batch: 680-165572

Prep Batch: 680-165308

Run Type: DL

Instrument ID: Initial Weight/Volume:

1010 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL

SGM

Result Type: SECONDARY

Analyte	Result (ug/L)	Qualifier	MDL	RL
PCB-1016	<25		1.8	25
PCB-1221	400	D	6.9	50
PCB-1232	26	Dр	2.7	25
PCB-1242	<25		4.5	25
PCB-1248	<25		8.9	25
PCB-1254	<25		6.4	25
PCB-1260	<25		5.0	25
PCB-1268	<25		6.4	25

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	0	D	35 - 120
Tetrachloro-m-xylene	0	D	35 - 120
DCB Decachlorobiphenyl	0	D	14 - 115
DCB Decachlorobiphenyl	0	D	14 - 115

14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5DF 2u

DCB Decachlorobiphenyl

 Lab Sample ID:
 680-56559-2
 Date Sampled: 04/07/2010 1650

 Client Matrix:
 Water
 Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC) Method: 8081A_8082 Analysis Batch: 680-165500 Instrument ID: SGJ Preparation: 3520C Prep Batch: 680-165308 Initial Weight/Volume: 1030 mL 1.0 Dilution: Final Weight/Volume: 10 mL 04/12/2010 2207 Date Analyzed: Injection Volume: 2 uL 04/09/2010 1703 Date Prepared: Result Type: **PRIMARY** Analyte Result (ug/L) Qualifier MDL RL PCB-1016 <0.97 0.069 0.97 PCB-1221 <1.9 0.27 1.9 PCB-1232 < 0.97 0.11 0.97 PCB-1242 0.97 < 0.97 0.17 PCB-1248 < 0.97 0.35 0.97 PCB-1254 < 0.97 0.25 0.97 PCB-1260 < 0.97 0.19 0.97 PCB-1268 < 0.97 0.25 0.97 Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 35 - 120 115 p

94

SGJ

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5DF 2u

Lab Sample ID: 680-56559-2 Date Sampled: 04/07/2010 1650

Client Matrix: Water Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: 8081A_8082 Analysis Batch: 680-165500 Instrument ID: Preparation: 3520C Prep Batch: 680-165308 Initial Weight/Volume: Dilution:

1030 mL 1.0 Final Weight/Volume: 10 mL 04/12/2010 2207 Date Analyzed: Injection Volume: 2 uL

04/09/2010 1703 Date Prepared: Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 248 Χ 35 - 120 DCB Decachlorobiphenyl 76 14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5DF 0.1u

 Lab Sample ID:
 680-56559-3
 Date Sampled: 04/07/2010 1650

 Client Matrix:
 Water
 Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC) Method: 8081A_8082 Analysis Batch: 680-165500 Instrument ID: SGJ Preparation: 3520C Prep Batch: 680-165308 Initial Weight/Volume: 1000 mL Dilution: 1.0 Final Weight/Volume: 10 mL 04/12/2010 2256 Date Analyzed: Injection Volume: 2 uL 04/09/2010 1703 Date Prepared: Result Type: **PRIMARY** Analyte Result (ug/L) Qualifier MDL RL PCB-1016 <1.0 0.071 1.0 PCB-1221 <2.0 2.0 0.28 PCB-1232 <1.0 0.11 1.0 PCB-1242 <1.0 0.18 1.0 PCB-1248 <1.0 0.36 1.0 PCB-1254 <1.0 0.26 1.0 PCB-1260 <1.0 0.20 1.0 PCB-1268 <1.0 0.26 1.0 Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 36 p 35 - 120 DCB Decachlorobiphenyl 28 p 14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5DF 0.1u

Lab Sample ID: 680-56559-3 Date Sampled: 04/07/2010 1650
Client Matrix: Water Date Received: 04/08/2010 1020

Client Matrix: Water Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC)

 Method:
 8081A_8082
 Analysis Batch: 680-165500
 Instrument ID:
 SGJ

 Preparation:
 3520C
 Prep Batch: 680-165308
 Initial Weight/Volume:
 1000 mL

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Date Analyzed:
 04/12/2010 2256
 Injection Volume:
 2 uL

 Date Prepared:
 04/09/2010 1703
 Result Type:
 SECONDARY

Date Prepared. 04/00/2010 1700 Result Type. GEGONDART

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene6035 - 120DCB Decachlorobiphenyl5614 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5D-DUP

Lab Sample ID: 680-56559-4 Date Sampled: 04/07/2010 1650

Client Matrix: Water Date Received: 04/08/2010 1020

Method:	8081A 8082	Analysis Batch: 680-165500	Inet	rument ID:	SGJ
Preparation:	3520C	Prep Batch: 680-165308		al Weight/Volume:	1020 mL
Dilution:	10	1 10p Baton: 000 100000		I Weight/Volume:	10 mL
Date Analyzed:	04/13/2010 0010			ction Volume:	2 uL
Date Prepared:	04/09/2010 1703		1284 (5 15)	ult Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016		<9.8		0.70	9.8
PCB-1221		220	Εp	2.7	20
PCB-1232		37	p	1.1	9.8
PCB-1242		<9.8		1.8	9.8
PCB-1248		<9.8		3.5	9.8
PCB-1254		<9.8		2.5	9.8
PCB-1260		<9.8		2.0	9.8
PCB-1268		<9.8		2.5	9.8
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xyle	ene	O	D	35 - 120	
DCB Decachlorob	iphenyl	0	D	14 - 115	

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5D-DUP

DCB Decachlorobiphenyl

Lab Sample ID: 680-56559-4 Date Sampled: 04/07/2010 1650 Client Matrix:

Water Date Received: 04/08/2010 1020

D

14 - 115

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: 8081A_8082 Analysis Batch: 680-165500 Instrument ID: SGJ Preparation: 3520C Prep Batch: 680-165308 Initial Weight/Volume: 1020 mL Dilution: Final Weight/Volume: 10 mL

0

04/13/2010 0010 Date Analyzed: Injection Volume: 2 uL 04/09/2010 1703 Date Prepared: Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 0 D 35 - 120

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: OWR-5D-DUP

Lab Sample ID: 680-56559-4 Date Sampled: 04/07/2010 1650

Client Matrix: Water Date Received: 04/08/2010 1020

		8081A_8082 Organochlorine Pesticio	des & PCBs (G	C)	
Method:	8081A_8082	Analysis Batch: 680-165572	Inst	rument ID:	SGM
Preparation:	3520C	Prep Batch: 680-165308	Initia	al Weight/Volume:	1020 mL
Dilution:	25			l Weight/Volume:	10 mL
Date Analyzed:	04/13/2010 1347	Run Type: DL		ction Volume:	2 uL
Date Prepared:	04/09/2010 1703		Res	SECONDARY	
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016		<25		1.7	25
PCB-1221		410	D	6.9	49
PCB-1232		35	Dр	2.7	25
PCB-1242		<25		4.4	25
PCB-1248		<25		8.8	25
PCB-1254		<25		6.4	25
PCB-1260		<25		4.9	25
PCB-1268		<25		6.4	25
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xylene		0	D	35 - 120	
Tetrachloro-m-xyle	ene	0	D	35 - 120	
DCB Decachlorob	iphenyl	0	D	14 - 115	
DCB Decachlorob	iphenyl	0	D	14 - 115	

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID:

EB-1

Lab Sample ID: Client Matrix:

680-56559-5

Water

Date Sampled: 04/07/2010 1430 Date Received: 04/08/2010 1020

		8081A_8082 Organochlorine Pesticio	des & PCBs (G0	()	
Method: 8081A_8082 Preparation: 3520C Dilution: 1.0 Date Analyzed: 04/13/2010 0034 Date Prepared: 04/09/2010 1703		Analysis Batch: 680-165500 Prep Batch: 680-165308	Initia Fina Injed	ument ID: al Weight/Volume: I Weight/Volume: ction Volume: ult Type:	SGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016	-	<0.97		0.069	0.97
PCB-1221		<1.9		0.27	1.9
PCB-1232		<0.97		0.11	0.97
PCB-1242		<0.97		0.17	0.97
PCB-1248		<0.97		0.35	0.97
PCB-1254		<0.97		0.25	0.97
PCB-1260		<0.97		0.19	0.97
PCB-1268		<0.97		0.25	0.97
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xyle	ene	59	59 3		
DCB Decachlorobiphenyl		65	65 14 - 1		

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: EB-1

Lab Sample ID: 680-56559-5

Client Matrix: Water

Date Sampled: 04/07/2010 1430 Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: 8081A_8082 Preparation: 3520C Dilution:

1.0

Date Analyzed: Date Prepared: 04/13/2010 0034

04/09/2010 1703

Prep Batch: 680-165308

Analysis Batch: 680-165500

Instrument ID:

Initial Weight/Volume:

SGJ 1030 mL

Final Weight/Volume: Injection Volume:

10 mL 2 uL

Result Type:

SECONDARY

Surrogate	%Rec	Qualifier	Acceptance Limits	
Tetrachloro-m-xylene	57		35 - 120	
DCB Decachlorobiphenyl	44		14 - 115	

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: Field Blank-1

 Lab Sample ID:
 680-56559-6
 Date Sampled: 04/07/2010 1600

 Client Matrix:
 Water
 Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC) Method: 8081A_8082 Analysis Batch: 680-165500 Instrument ID: SGJ Preparation: 3520C Prep Batch: 680-165308 Initial Weight/Volume: 1010 mL Dilution: 1.0 Final Weight/Volume: 10 mL 04/13/2010 0057 Date Analyzed: Injection Volume: 2 uL 04/09/2010 1703 Date Prepared: Result Type: **PRIMARY** Analyte Result (ug/L) Qualifier MDL RLPCB-1016 < 0.99 0.070 0.99 PCB-1221 <2.0 0.28 2.0 PCB-1232 < 0.99 0.11 0.99 PCB-1242 < 0.99 0.99 0.18 PCB-1248 < 0.99 0.36 0.99 PCB-1254 < 0.99 0.26 0.99 PCB-1260 < 0.99 0.20 0.99 PCB-1268 < 0.99 0.26 0.99 Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 26 X 35 - 120 DCB Decachlorobiphenyl 45 14 - 115

Client: Golder Associates Inc. Job Number: 680-56559-1

Client Sample ID: Field Blank-1

Lab Sample ID: 680-56559-6 Date Sampled: 04/07/2010 1600

Client Matrix: Water Date Received: 04/08/2010 1020

8081A_8082 Organochlorine Pesticides & PCBs (GC)

 Method:
 8081A_8082
 Analysis Batch: 680-165500
 Instrument ID:
 SGJ

 Preparation:
 3520C
 Prep Batch: 680-165308
 Initial Weight/Volume:
 1010 mL

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

Date Analyzed: 04/13/2010 0057 Injection Volume: 2 uL

Date Prepared: 04/09/2010 1703 Result Type: SECONDARY

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene26X35 - 120DCB Decachlorobiphenyl3414 - 115

DATA REPORTING QUALIFIERS

Client: Golder Associates Inc. Job Number: 680-56559-1

Lab Section	Qualifier	Description
GC Semi VOA		
	F	MS or MSD exceeds the control limits
	E	Result exceeded calibration range.
	X	Surrogate is outside control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

QUALITY CONTROL RESULTS

Client: Golder Associates Inc. Job Number: 680-56559-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 680-165308					
_CS 680-165308/22-A	Lab Control Sample	T	Water	3520C	
MB 680-165308/21-A	Method Blank	T	Water	3520C	
880-56559-1	OWR-5D	T	Water	3520C	
880-56559-1DL	OWR-5D	T	Water	3520C	
880-56559-1MS	Matrix Spike	T	Water	3520C	
80-56559-1MSD	Matrix Spike Duplicate	T	Water	3520C	
880-56559-2	OWR-5DF 2u	T	Water	3520C	
880-56559-3	OWR-5DF 0.1u	T	Water	3520C	
880-56559-4	OWR-5D-DUP	T	Water	3520C	
880-56559-4DL	OWR-5D-DUP	T	Water	3520C	
880-56559-5	EB-1	Т	Water	3520C	
880-56559-6	Field Blank-1	T	Water	3520C	
Analysis Batch:680-16550	00				
CS 680-165308/22-A	Lab Control Sample	T	Water	8081A 8082	680-165308
MB 680-165308/21-A	Method Blank	T	Water	8081A_8082	680-165308
880-56559-1	OWR-5D	T	Water	8081A_8082	680-165308
80-56559-1MS	Matrix Spike	T	Water	8081A 8082	680-165308
880-56559-1MSD	Matrix Spike Duplicate	Т	Water	8081A 8082	680-165308
880-56559-2	OWR-5DF 2u	Ť	Water	8081A 8082	680-165308
80-56559-3	OWR-5DF 0.1u	Т	Water	8081A_8082	680-165308
880-56559-4	OWR-5D-DUP	Т	Water	8081A 8082	680-165308
880-56559-5	EB-1	T	Water	8081A 8082	680-165308
880-56559-6	Field Blank-1	T	Water	8081A_8082	680-165308
Analysis Batch:680-16557	72				
880-56559-1DL	OWR-5D	Т	Water	8081A 8082	680-165308
880-56559-4DL	OWR-5D-DUP	Ŧ	Water	8081A 8082	680-165308

Report Basis

T = Total

Client: Golder Associates Inc. Job Number: 680-56559-1

Surrogate Recovery Report

8081A 8082 Organochlorine Pesticides & PCBs (GC)

Client Matrix: Water

		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
680-56559-1	OWR-5D	0D	0D	0D	0D
680-56559-1 DL	OWR-5D DL	0D	0D	0D	0D
680-56559-2	OWR-5DF 2u	248X	115p	76	94
680-56559-3	OWR-5DF 0.1u	60	36p	56	28p
680-56559-4	OWR-5D-DUP	0D	0D	0D	0D
680-56559-4 DL	OWR-5D-DUP DL	0D	0D	0D	0D
680-56559-5	EB-1	57	59	65	44
680-56559-6	Field Blank-1	26X	26X	45	34
MB 680-165308/21-A		56	54	50	48
LCS 680-165308/22-A		31X	32X	53	52
680-56559-1 MS	OWR-5D MS	0D	0D	0D	0D
680-56559-1 MSD	OWR-5D MSD	0D	0D	0D	0D

Surrogate	Acceptance Limits		
TCX = Tetrachloro-m-xylene	35-120		
DCB = DCB Decachlorobiphenyl	14-115		

Quality Control Results

Client: Golder Associates Inc. Job Number: 680-56559-1

Method Blank - Batch: 680-165308 Method: 8081A_8082
Preparation: 3520C

Preparation: 3520C

Lab Sample ID: MB 680-165308/21-A Analysis Batch: 680-165500 Instrument ID: SGJ

Client Matrix: Water Prep Batch: 680-165308 Lab File ID: jd12014.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 100

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 04/12/2010 1805

Date Prepared: 04/09/2010 1703

Units: ug/L Initial Weight/Volume: 100 mL

Injection Volume: 2 uL

Column ID: PRIMARY

RL Analyte Result Qual MDL PCB-1016 0.071 1.0 <1.0 PCB-1221 <2.0 0.28 2.0 PCB-1232 <1.0 0.11 1.0 PCB-1242 <1.0 0.18 1.0 PCB-1248 <1.0 0.36 1.0 PCB-1254 <1.0 0.26 1.0 PCB-1260 <1.0 0.20 1.0 PCB-1268 <1.0 0.26 1.0 Surrogate % Rec Acceptance Limits 35 - 120 Tetrachloro-m-xylene 56

 DCB Decachlorobiphenyl
 50
 14 - 115

 Surrogate
 % Rec
 Acceptance Limits

 Tetrachloro-m-xylene
 54
 35 - 120

 DCB Decachlorobiphenyl
 48
 14 - 115

Lab Control Sample - Batch: 680-165308 Method: 8081A_8082
Preparation: 3520C

Preparation: 3520C

 Lab Sample ID:
 LCS 680-165308/22-A
 Analysis Batch:
 680-165500
 Instrument ID:
 SGJ

 Client Matrix:
 Water
 Prep Batch:
 680-165308
 Lab File ID:
 jd12015.d

 Dilution:
 1.0
 Units:
 ug/L
 Initial Weight/Volume:
 1000
 mL

 Date Analyzed:
 04/12/2010 1830
 Final Weight/Volume:
 10 mL

 Date Prepared:
 04/09/2010 1703
 Injection Volume:
 2 uL

 Column ID:
 PRIMARY

Analyte Spike Amount % Rec. Limit Result Qual PCB-1016 57 - 124 10.0 6.63 66 PCB-1260 10.0 8.22 82 58 - 124 Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 32 X 35 - 120 DCB Decachlorobiphenyl 53 14 - 115 % Rec Acceptance Limits

Surrogate% RecAcceptance LimitsTetrachloro-m-xylene31X35 - 120DCB Decachlorobiphenyl5214 - 115

Quality Control Results

Client: Golder Associates Inc. Job Number: 680-56559-1

Matrix Spike/ Method: 8081A_8082
Matrix Spike Duplicate Recovery Report - Batch: 680-165308 Preparation: 3520C

MS Lab Sample ID: 680-56559-1 Analysis Batch: 680-165500 Instrument ID: SGJ Client Matrix: Water Prep Batch: 680-165308 Lab File ID: id12034.d Dilution: 10 Initial Weight/Volume: 1000 mL 04/13/2010 0209 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared:

te Prepared: 04/09/2010 1703 Injection Volume: 2 uL
Column ID: PRIMARY

 MSD Lab Sample ID:
 680-56559-1
 Analysis Batch:
 680-165500
 Instrument ID:
 SGJ

 Client Matrix:
 Water
 Prep Batch:
 680-165308
 Lab File ID:
 jd12036.d

Dilution: 10 Initial Weight/Volume: 1000 mL
Date Analyzed: 04/13/2010 0258 Final Weight/Volume: 10 mL

Date Prepared: 04/09/2010 1703 Injection Volume: 2 uL Column ID: PRIMARY

% Rec. MS Analyte MSD Limit RPD **RPD Limit** MS Qual MSD Qual PCB-1016 0 F 0 57 - 124 NC 40 F PCB-1260 0 0 58 - 124 NC 40 F F Surrogate MS % Rec MSD % Rec Acceptance Limits 0 D 0 D Tetrachloro-m-xylene 35 - 120 DCB Decachlorobiphenyl 0 D 0 D 14 - 115 Surrogate MS % Rec MSD % Rec Acceptance Limits Tetrachloro-m-xylene 0 D 0 D 35 - 120 DCB Decachlorobiphenyl 0 D 0 D 14 - 115

Serial Number 009041

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD Testamerica						5102 LaRoche Avenue Phone: (912) 354-7858 Savannah, GA 31404 Fax: (912) 352-0165													
								\subset	⊃ Alte	rnate Lal	oratory Na	me/Loc	ation		Phone:				
THE LEAD	ER IN ENVIR	ONMENTAL	TESTING		16.										Fax:	20.0000 20.0000		e 20 - 200 de	20
PROJECT REFE			PROJECT NO.		PROJECT LOCATION (STATE)	S 3	MATRIX TYPE	(RI	EQUIRE	D ANALYS	IS			PAGE		OF
TAL (LAB) PROJ	ECT MANAGER		P.O. NUMBER	•	CONTRACT NO.	土		()	'ai	2							STANDARD RE	PORT	0
CLIENT (SITE) P	M 4ARDS /STE	VE MIEUGA	CLIENT PHON	E	CLIENT FAX	(C) OR GRAB (G) INDICATE		OLVEN	Aracler	Hortows							DATE DUE	<u>:</u>	123
CLIENT NAME	Decon	NTC (CLIENT E-MAI	@ adl.	LANG	AB (G)		(OIL, St	A								EXPEDITED RI	- 1	\circ
CLIENT ADDRES	SS 200.15	Dr. C.	1 JE 10 Lg	y your	r. com FL 37256	OR GF	SOLID	anon	R.B.S	17.655							(SURCHARGE) DATE DUE		
COMPANY CON	TRACTING THE	S WORK (if app	ミヤゆ つみ(licable)	XXVIIIE	FU SULIV	COMPOSITE (C)	SOLID OR SEMISOLID	AIR NONAQUEOUS LIQUID (OIL, SOLVENT,)		***************************************		7 P. 2200 13 2 P. 2200 13		indent (/5		NUMBER OF C PER SHIPMEN		SUBMITTED
SAM DATE	PLE TIME		SAMPL	E IDENTIFICATIO	N	COMP	SOLID	NONA		3	NUMBER C	F CONT	AINERS S	UBMITTE	D		R	EMARKS	}
4/1/10		OWR-			8	G		V	12	12								6-12	
	1650	OWR-	SDF :	Zu		6		V	Z	2									
	1650	OWR-	SDF 0			6		V	1-72	12									
	1650	OWR-5	D-DUP			C		V	1	l									
W	1436	EB-1				B		j/	1	1									
	1600	FIELD BL	ANK -1			G	4	1	1	1	***************************************								
	1680	MS				G		1	1	1							*		
-4	1630	MSD		W. 200 (1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990	2 (2 20 20 20 20 20 20 20 20 20 20 20 20 20	6		1		1								,	
							+												
			***************************************				+												
RELINQUISHED	By: (SIGNATURE)		DATE /10	TIME 1000	RELINQUISHED BY: (SIG	<u> </u> Snature	<u> </u>			DATE	TIME		RELING	UISHED I	BY: (SIGNATU	I I	DATE		TIME
RECEIVED BY: (5	SIGNATURE)		DATE	TIME	RECEIVED BY: (SIGNATUI	RE)				DATE	TIME		RECEIV	ED BY: (s	GNATURE)		DATE		TIME
	- W	W 1789-200					20 0 7 0 0 0 0		ONLY	-							<u> </u>		
RECEIVED FOR (SIGNATURE)		Υ.	था भा०	TIME	CUSTODY INTACT YES	CUS	TODY L NO.			NAH 0. 68		RATORY	REMARK	10	mP.				CONTRACT OF
1 Duti	100	Mohtu	1	1020	NO O				5	J55	7	50000	Augusta 1995	0	60	0 8.	ها.		

Login Sample Receipt Check List

Client: Golder Associates Inc. Job Number: 680-56559-1

Login Number: 56559 List Source: TestAmerica Savannah

Creator: Daughtry, Beth

List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Is the Field Sampler's name present on COC?	N/A
Sample Preservation Verified	True

ANALYTICAL REPORT

Job Number: 680-56559-2

Job Description: Anniston Landfill Site

For:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, GA 30341

Attention: Mr. Tim Richards

Cideja galicia

Approved for release Lidya Gulizia Project Manager I 4/20/2010 5:41 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
04/20/2010

cc: Mr. Steve Moeller

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

Job Narrative 680-56559-2

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 680: Sample OWR-5D (680-56559-1), OWR-5D-DUP (680-56559-4) was diluted due to the abundance of target analytes As such, surrogate recoveries are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 680: Matrix spikes for batch 165312 could not be recovered due to sample target abundances which required sample dilution. The associated laboratory control sample (LCS) met acceptance criteria. The matrix spike sample analyses were cancelled based on this information.

No other analytical or quality issues were noted.

Comments

No additional comments.

METHOD SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-2

Description	Lab Location	Method	Preparation Method	
Matrix: Water				
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680		
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV		EPA 680	

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-2

Method	Analyst	Analyst ID
EPA 680	Chamberlain, Kim	KAC

SAMPLE SUMMARY

Client: Golder Associates Inc. Job Number: 680-56559-2

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-56559-1	OWR-5D	Water	04/07/2010 1650	04/08/2010 1020
680-56559-2	OWR-5DF 2u	Water	04/07/2010 1650	04/08/2010 1020
680-56559-3	OWR-5DF 0.1u	Water	04/07/2010 1650	04/08/2010 1020
680-56559-4	OWR-5D-DUP	Water	04/07/2010 1650	04/08/2010 1020
680-56559-5	EB-1	Water	04/07/2010 1430	04/08/2010 1020
680-56559-6	Field Blank-1	Water	04/07/2010 1600	04/08/2010 1020

SAMPLE RESULTS

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID:

OWR-5D

Lab Sample ID:

Date Analyzed:

Date Prepared:

680-56559-1

Client Matrix:

Water

Date Sampled: 04/07/2010 1650

Date Received: 04/08/2010 1020

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	-----------	--------	---------

Method: 680 680 Preparation: Dilution: 100

04/13/2010 2017 04/09/2010 1703 Analysis Batch: 680-165611

Prep Batch: 680-165312

Instrument ID: Lab File ID:

MSF N/A

Initial Weight/Volume: Final Weight/Volume:

1020 mL 1 mL

Injection Volume:

		500.50-00			
Analyte	Result (ug/L)	Qualifier	MDL	RL	
Monochlorobiphenyl	460		0.55	9.8	
Dichlorobiphenyl	120		0.53	9.8	
Trichlorobiphenyl	16		0.64	9.8	
Tetrachlorobiphenyl	<20		1.3	20	
Pentachlorobiphenyl	<20		1.4	20	
Hexachlorobiphenyl	<20		1.5	20	
Heptachlorobiphenyl	<29		2.9	29	
Octachlorobiphenyl	<29		3.7	29	
Nonachlorobiphenyl	<49		4.8	49	
DCB Decachlorobiphenyl	<49		6.9	49	
Surrogate	%Rec	Qualifier	Accepta	nce Limits	
Decachlorobiphenyl-13C12	0	D	25 - 113		

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID: OWR-5DF 2u

 Lab Sample ID:
 680-56559-2
 Date Sampled: 04/07/2010 1650

 Client Matrix:
 Water
 Date Received: 04/08/2010 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

 Method:
 680
 Analysis Batch: 680-165611
 Instrument ID:
 MSF

 Preparation:
 680
 Prep Batch: 680-165312
 Lab File ID:
 N/A

 Dilution:
 1.0
 Initial Weight/Volume:
 1000 mL

 Date Analyzed:
 04/13/2010 2049
 Final Weight/Volume:
 1 mL

Date Prepared: 04/09/2010 1703 Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Monochlorobiphenyl	2.4		0.0056	0.10	
Dichlorobiphenyl	0.22		0.0054	0.10	
Trichlorobiphenyl	<0.10		0.0065	0.10	
Tetrachlorobiphenyl	<0.20		0.013	0.20	
Pentachlorobiphenyl	<0.20		0.014	0.20	
Hexachlorobiphenyl	<0.20		0.015	0.20	
Heptachlorobiphenyl	<0.30		0.030	0.30	
Octachlorobiphenyl	<0.30		0.038	0.30	
Nonachlorobiphenyl	<0.50		0.049	0.50	
DCB Decachlorobiphenyl	<0.50		0.070	0.50	
Surrogate	%Rec	Qualifier	Acceptar	ice Limits	

Decachlorobiphenyl-13C12 82 25 - 113

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID: OWR-5DF 0.1u

Lab Sample ID: 680-56559-3 Date Sampled: 04/07/2010 1650 Client Matrix:

Water Date Received: 04/08/2010 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Analysis Batch: 680-165611 Instrument ID: MSF 680 Preparation: Prep Batch: 680-165312 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 1010 mL 04/13/2010 2122 Date Analyzed: Final Weight/Volume: 1 mL

04/09/2010 1703 Date Prepared: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	<0.099		0.0055	0.099
Dichlorobiphenyl	0.012	J	0.0053	0.099
Trichlorobiphenyl	< 0.099		0.0064	0.099
Tetrachlorobiphenyl	<0.20		0.013	0.20
Pentachlorobiphenyl	<0.20		0.014	0.20
Hexachlorobiphenyl	<0.20		0.015	0.20
Heptachlorobiphenyl	<0.30		0.030	0.30
Octachlorobiphenyl	<0.30		0.038	0.30
Nonachlorobiphenyl	<0.50		0.049	0.50
DCB Decachlorobiphenyl	<0.50		0.069	0.50
Surrogate	%Rec	Qualifier	Acceptance Limits	

Decachlorobiphenyl-13C12 76 25 - 113

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID: OWR-5D-DUP

Lab Sample ID: 680-56559-4 Date Sampled: 04/07/2010 1650 Client Matrix: Water Date Received: 04/08/2010 1020

680 Polychlorinated Biphenyls	(PCBs)	(GC/MS)
-------------------------------	--------	---------

Method: 680 Analysis Batch: 680-165611 Instrument ID: MSF 680 Prep Batch: 680-165312 Preparation: Lab File ID: N/A Dilution: 100 Initial Weight/Volume: 1015 mL

04/13/2010 2154 Date Analyzed: Final Weight/Volume: 1 mL

04/09/2010 1703 Date Prepared: Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Monochlorobiphenyl	470		0.55	9.9	
Dichlorobiphenyl	110		0.53	9.9	
Trichlorobiphenyl	<9.9		0.64	9.9	
Tetrachlorobiphenyl	<20		1.3	20	
Pentachlorobiphenyl	<20		1.4	20	
Hexachlorobiphenyl	<20		1.5	20	
Heptachlorobiphenyl	<30		3.0	30	
Octachlorobiphenyl	<30		3.7	30	
Nonachlorobiphenyl	<49		4.8	49	
DCB Decachlorobiphenyl	<49		6.9	49	
Surrogate	%Rec	Qualifier	Accepta	nce Limits	

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID:

EB-1

Lab Sample ID:

680-56559-5

Client Matrix:

Water

Date Sampled: 04/07/2010 1430

Date Received: 04/08/2010 1020

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	-----------	--------	---------

Method: 680 680 Preparation: Dilution:

1.0

04/13/2010 2226 Date Analyzed: 04/09/2010 1703 Date Prepared:

Analysis Batch: 680-165611

Prep Batch: 680-165312

Instrument ID: Lab File ID:

MSF N/A

Initial Weight/Volume: Final Weight/Volume: 1 mL

1030 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	0.54		0.0054	0.097
Dichlorobiphenyl	0.11		0.0052	0.097
Trichlorobiphenyl	<0.097		0.0063	0.097
Tetrachlorobiphenyl	<0.19		0.013	0.19
Pentachlorobiphenyl	<0.19		0.014	0.19
Hexachlorobiphenyl	<0.19		0.015	0.19
Heptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.037	0.29
Nonachlorobiphenyl	< 0.49		0.048	0.49
DCB Decachlorobiphenyl	<0.49		0.068	0.49
Surrogate	%Rec	Qualifier	Acceptar	ice Limits
Decachlorobiphenyl-13C12	80		25 - 113	

Client: Golder Associates Inc. Job Number: 680-56559-2

Client Sample ID: Field Blank-1

 Lab Sample ID:
 680-56559-6
 Date Sampled: 04/07/2010 1600

 Client Matrix:
 Water
 Date Received: 04/08/2010 1020

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method:680Analysis Batch: 680-165611Instrument ID:MSFPreparation:680Prep Batch: 680-165312Lab File ID:N/ADilution:1.0Initial Weight/Volume:1040

 Dilution:
 1.0
 Initial Weight/Volume:
 1040 mL

 Date Analyzed:
 04/13/2010 2259
 Final Weight/Volume:
 1 mL

Date Prepared: 04/09/2010 1703 Injection Volume:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	<0.096		0.0054	0.096
Dichlorobiphenyl	<0.096		0.0052	0.096
Trichlorobiphenyl	<0.096		0.0062	0.096
Tetrachlorobiphenyl	<0.19		0.012	0.19
Pentachlorobiphenyl	<0.19		0.013	0.19
Hexachlorobiphenyl	<0.19		0.014	0.19
Heptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.037	0.29
Nonachlorobiphenyl	<0.48		0.047	0.48
DCB Decachlorobiphenyl	<0.48		0.067	0.48
Surrogate	%Rec	Qualifier	Acceptance Limits	

Decachlorobiphenyl-13C12 73 25 - 113

DATA REPORTING QUALIFIERS

Client: Golder Associates Inc. Job Number: 680-56559-2

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

QUALITY CONTROL RESULTS

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-165312					
LCS 680-165312/10-A	Lab Control Sample	T	Water	680	
MB 680-165312/9-A	Method Blank	T	Water	680	
680-56559-1	OWR-5D	T	Water	680	
680-56559-2	OWR-5DF 2u	T	Water	680	
680-56559-3	OWR-5DF 0.1u	T	Water	680	
680-56559-4	OWR-5D-DUP	T	Water	680	
680-56559-5	EB-1	T	Water	680	
680-56559-6	Field Blank-1	Т	Water	680	
Analysis Batch:680-165	611				
LCS 680-165312/10-A	Lab Control Sample	T	Water	680	680-165312
MB 680-165312/9-A	Method Blank	T	Water	680	680-165312
680-56559-1	OWR-5D	Т	Water	680	680-165312
680-56559-2	OWR-5DF 2u	T	Water	680	680-165312
680-56559-3	OWR-5DF 0.1u	T	Water	680	680-165312
680-56559-4	OWR-5D-DUP	T	Water	680	680-165312
680-56559-5	EB-1	T	Water	680	680-165312
680-56559-6	Field Blank-1	T	Water	680	680-165312

Report Basis

T = Total

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Water

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-56559-1	OWR-5D	0D
680-56559-2	OWR-5DF 2u	82
680-56559-3	OWR-5DF 0.1u	76
680-56559-4	OWR-5D-DUP	0D
680-56559-5	EB-1	80
680-56559-6	Field Blank-1	73
MB 680-165312/9-A		100
LCS 680-165312/10-	A	109

Surrogate Acceptance Limits

13DCB = Decachlorobiphenyl-13C12

Client: Golder Associates Inc. Job Number: 680-56559-2

Method Blank - Batch: 680-165312

Method: 680 Preparation: 680

Client Matrix:

Lab Sample ID: MB 680-165312/9-A

Water

Dilution: 1.0

Date Analyzed: Date Prepared:

04/13/2010 1410 04/09/2010 1703

Analysis Batch: 680-165611 Prep Batch: 680-165312

Units: ug/L

Instrument ID: MSF Lab File ID: N/A

1000 mL Initial Weight/Volume:

Final Weight/Volume: 1 mL

Injection Volume:

Analyte	Result	Qual	MDL	RL
Monochlorobiphenyl	<0.10		0.0056	0.10
Dichlorobiphenyl	<0.10		0.0054	0.10
Trichlorobiphenyl	<0.10		0.0065	0.10
Tetrachlorobiphenyl	<0.20		0.013	0.20
Pentachlorobiphenyl	<0.20		0.014	0.20
Hexachlorobiphenyl	<0.20		0.015	0.20
Heptachlorobiphenyl	<0.30		0.030	0.30
Octachlorobiphenyl	<0.30		0.038	0.30
Nonachlorobiphenyl	<0.50		0.049	0.50
DCB Decachlorobiphenyl	<0.50		0.070	0.50
Surrogate	% Rec		Acceptance Limits	
Decachlorobiphenyl-13C12	100		25 - 113	

Lab Control Sample - Batch: 680-165312

Method: 680 Preparation: 680

Lab Sample ID: LCS 680-165312/10-A

Client Matrix:

Water

Dilution:

1.0

Date Analyzed:

04/13/2010 1515

Date Prepared:

04/09/2010 1703

Analysis Batch: 680-165611 Prep Batch: 680-165312

Units: ug/L

Instrument ID: MSF

Lab File ID: N/A

Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL

Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Monochlorobiphenyl	2.00	1.55	77	10 - 125	
Dichlorobiphenyl	2.00	1.75	88	10 - 110	
Trichlorobiphenyl	2.00	1.82	91	17 - 110	
Tetrachlorobiphenyl	4.00	3.63	91	18 - 110	
Pentachlorobiphenyl	4.00	3.95	99	34 - 110	
Hexachlorobiphenyl	4.00	3.85	96	31 - 110	
Heptachlorobiphenyl	6.00	5.92	99	33 - 110	
Octachlorobiphenyl	6.00	6.16	103	33 - 110	
DCB Decachlorobiphenyl	10.0	9.86	99	26 - 115	
Surrogate	% R	ec	Acc	ceptance Limits	
Decachlorobiphenyl-13C12	10	9		25 - 113	

Decachlorobiphenyl-13C12 109

Serial Number 009041

Tec	tAn	74 SERVINES N. 1048 SECT. 11700FE 99.		AND CHAIR	N OF CUSTODY F	RECO	ORD	Q	51	estAmeric 02 LaRo avannah,	che Av	enue			Phone:	e: www.tes (912) 354 (2) 352-0		com.	
								<		ernate L	aborato	ory Name/Loc	cation						
THE LEAD	ER IN ENVIR	ONMENTAL	TESTING		Tel										Phone: Fax:				
PROJECT REFE			PROJECT NO.		PROJECT LOCATION (STATE)	T	MATR TYPE		T	***************************************		REQUIRE	D ANALYS	IS		P	AGE	0	F
TAL (LAB) PROJ			P.O. NUMBER	•	CONTRACT NO.	型			1	2							L STANDARD RE DELIVERY	PORT	\supset
CLIENT (SITE) P	MAROS /STE	WE MIELLER	CLIENT PHON	E	CLIENT FAX	INDICA		OIVEN	Acacher	Hostowas							DATE DUE	8	
CLIENT NAME COLDEGE	Associ	ATES	CLIENT E-MAI	@ soldo	r. COMA	(C) OR GRAB (G) INDICATE		IOII. S	A S							D	EXPEDITED RI DELIVERY SURCHARGE]		>
CLIENT ADDRES	3S	RD CIPT	= 400	V SAMMIC	r. com FL 37756	ORG	TER) ISOLID		72 BS	7685							DATE DUE		
COMPANY CON	TRACTING THIS	3 WORK (if app	licable)	20,010	10 301.	COMPOSITE (C	AQUEOUS (WATER) SOLID OR SEMISOLID	AIR NONAQUEOUS LIQUID (OIL. SOLVENT)	-		36	putes (50) pues l Lees (50) been l			/B		NUMBER OF C PER SHIPMEN		JBMITTED
SAM DATE	PLE TIME		SAMPL	E IDENTIFICATIO	אכ	COMF	AQUE	AIR	Š		NUN	MBER OF CON	TAINERS S	UBMITTE	D		RI	EMARKS	d
4/1/10		OWR-			*	G		V	1/2	12								ž_22	Ţ
1	1650	OWR-	5DF :	2m		6		V	12	12									c
			SDF 0			6		V	1/2	12									
	1650	OWR-5	D-DUP			C	8	V	1	l								***************************************	ć
W	1430	EB-1				B		الإ	1										
	1600	FIELD BL	ANK-1			G	ą	V	1	1									
	1630	MS				G		V	1	1									
4	1630	MSD			38	6		V	11	1/1									
•			\$15,5550		30 00 300 300 300 300 300 300 300 300 3												00000000000 BZ	253953	
			V ORDER CONTROL OF THE PROPERTY OF THE PROPERT	7.000 (2.													500 Read Processor 1, 1905 (1986) (1986) (1986)	AND THE RESERVE	
		100 No. 500 No		64.57 2011-0575 50747-290	2 200												7000 17004 0000000	575 39.62	
RELINQUISHED	BY (SIGNATURE)	//	4/8/10	TIME 1020	RELINQUISHED BY: (sid	MATUR	(E)			DATE	And of the last of	TIME	RELINQ	UISHED	BY: (SIGNATURI	Ξ)	DATE	TIN	ΝE
RECEIVED BY: (8	SIGNATURE)	>	DATE	TIME	RECEIVED BY: (SIGNATUR	RE)				DATE	118	TIME	RECEIV	/ED BY: (s	ignature)		DATE	TIA	ИE
	***		<u> </u>	200 200 20	<u>Lun</u>				SE ONLY					***************************************			<u> </u>		
RECEIVED FOR (SIGNATURE)		Υ:	279 8/10	TIME	CUSTODY INTACT YES	CUS SE/	STODY AL NO.	5	LOGI	NNAH NO. 6	80 -	LABORATOR'	Y REMARK	1	mp	¥.			
Buth	100	Junkti	1 110	1020	NO O			2		655				0	610.9	018	6		30 70 70 70 FW WAX A C

Login Sample Receipt Check List

Client: Golder Associates Inc. Job Number: 680-56559-2

Login Number: 56559 List Source: TestAmerica Savannah

Creator: Daughtry, Beth

List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Is the Field Sampler's name present on COC?	N/A
Sample Preservation Verified	True

ANALYTICAL REPORT

Job Number: 680-56602-1

Job Description: Anniston Landfill Site

For:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, GA 30341

Attention: Mr. Tim Richards

Cideja galicia

Approved for release Lidya Gulizia Project Manager I 4/20/2010 5:27 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
04/20/2010

cc: Mr. Steve Moeller

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

Job Narrative 680-56602-1 (Revised; 4-14-10)

Receipt

All samples were received in good condition within temperature requirements.

GC Semi VOA

Method(s) 3550B: The following sample(s) required a sulfuric acid clean-up to reduce matrix interferences: AA2-CON (680-56602-3) and the associated MS/MSD (680-56602-3 MS and 680-56602-3 MSD), AA2-CON-FD (680-56602-4), SSR1-11-E-5 (680-56602-7), SSR1-11-N-10 (680-56602-5), SSR1-11-S-10 (680-56602-6), SSR1-11-W-10-3 (680-56602-9), SSR1-11-W-15 (680-56602-8).

Method(s) 8081A_8082: Due to the level of dilution required for the following sample(s), surrogate recoveries are not reported: AA2-CON (680-56602-3), AA2-CON-FD (680-56602-4), SSR1-11-E-5 (680-56602-7), SSR1-11-N-10 (680-56602-5), SSR1-11-S-10 (680-56602-6).

Method(s) 8081A_8082: The matrix spike samples for sample AA2-CON (680-56602-3) were diluted due to the abundance of target analytes. As such, surrogate and spike recoveries are not reported.

Method(s) 8081A_8082: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: SSR1-11-W-15 (680-56602-8). These results have been reported and qualified. The results for DCB were further qualified as estimated (flag E) due to positive interference from a non-target compound.

Method(s) 8081A_8082: This method incorporates the use of second column confirmation. Corrective action for unacceptable percent recovery is not taken for surrogate or spike compounds unless the results from both columns are outside criteria. Any results which fall outside criteria are qualified and reported.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Comments

A revised report was issued on april 14, 2010 to correct the PCB reporting limits on the aqeuous field QC samples which were erroneously reported at an incorrect reporting limit based on the final sample volume.

The report was again revised on April 20, 2010 per client request to add Arochlor 1268 to the target reporting list for Method 8082.

Results for Method 680 PCB Homolog results will be submitted following completion in the report for job series 680-56602-2.

No additional comments.

METHOD SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-1

Description	Lab Location	Method Preparation Method
Matrix: Solid	-	
Organochlorine Pesticides & PCBs (GC)	TAL SAV	SW846 8081A_8082
Ultrasonic Extraction	TAL SAV	SW846 3550B
Matrix: Water		
Organochlorine Pesticides & PCBs (GC)	TAL SAV	SW846 8081A_8082
Liquid-Liquid Extraction (Continuous)	TAL SAV	SW846 3520C

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-1

Method	Analyst	Analyst ID
SW846 8081A_8082	Kellar, Joshua	JK
SW846 8081A_8082	Smith, Crystal	CAS

SAMPLE SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-1

Lab Sample ID	b Sample ID Client Sample ID Client Matrix		Date/Time Sampled	Date/Time Received		
Lab Campic ID	Cheff Cample 15	CHEIR MAUIX	Campica	Received		
680-56602-1	RB-AA2-CON	Water	04/07/2010 1845	04/09/2010 0927		
680-56602-2	FB-AA2-CON	Water	04/07/2010 1850	04/09/2010 0927		
680-56602-3	AA2-CON	Solid	04/07/2010 1730	04/09/2010 0927		
680-56602-4	AA2-CON-FD	Solid	04/07/2010 1730	04/09/2010 0927		
100		***************************************		7		

SAMPLE RESULTS

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID:

RB-AA2-CON

Lab Sample ID:

680-56602-1

Client Matrix: Water

Date Sampled: 04/07/2010 1845 Date Received: 04/09/2010 0927

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3520C 1.0 04/13/2010 2051 04/12/2010 1730	Analysis Batch: 680-165593 Prep Batch: 680-165426	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:		SGM 1000 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016		<1.0		0.071	1.0
PCB-1221		<2.0		0.28	2.0
PCB-1232		<1.0		0.11	1.0
PCB-1242		<1.0		0.18	1.0
PCB-1248		<1.0		0.36	1.0
PCB-1254		<1.0		0.26	1.0
PCB-1260		<1.0		0.20	1.0
PCB-1268		<1.0		0.26	1.0
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xyle	ene	71		35 - 120	
DCB Decachlorob	iphenyl	18		14 - 115	

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID: RB-AA2-CON

 Lab Sample ID:
 680-56602-1
 Date Sampled: 04/07/2010 1845

 Client Matrix:
 Water
 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: 8081A_8082
Preparation: 3520C

Dilution: 1.0

Date Analyzed: 04/13/2010 2051

Date Prepared: 04/12/2010 1730

Analysis Batch: 680-165593 Prep Batch: 680-165426

65593 Instrument ID:

Initial Weight/Volume:

SGM 1000 mL

Final Weight/Volume: Injection Volume:

10 mL 2 uL

Result Type:

SECONDARY

Surrogate	%Rec	Qualifier	Acceptance Limits	
Tetrachloro-m-xylene	70		35 - 120	
DCB Decachlorobiphenyl	15		14 - 115	

14 - 115

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID: FB-AA2-CON

DCB Decachlorobiphenyl

 Lab Sample ID:
 680-56602-2
 Date Sampled: 04/07/2010 1850

 Client Matrix:
 Water
 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC) Method: 8081A_8082 Analysis Batch: 680-165593 Instrument ID: SGM Preparation: 3520C Prep Batch: 680-165426 Initial Weight/Volume: 1020 mL Dilution: 1.0 Final Weight/Volume: 10 mL 04/13/2010 2110 Date Analyzed: Injection Volume: 2 uL 04/12/2010 1730 Date Prepared: Result Type: **PRIMARY** Analyte Result (ug/L) Qualifier MDL RLPCB-1016 < 0.98 0.070 0.98 PCB-1221 <2.0 2.0 0.27 PCB-1232 < 0.98 0.11 0.98 PCB-1242 < 0.98 0.98 0.18 PCB-1248 < 0.98 0.35 0.98 PCB-1254 < 0.98 0.25 0.98 PCB-1260 < 0.98 0.20 0.98 PCB-1268 < 0.98 0.25 0.98 Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 73 35 - 120

58

SGM

1020 mL

10 mL

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID: FB-AA2-CON

 Lab Sample ID:
 680-56602-2
 Date Sampled: 04/07/2010 1850

 Client Matrix:
 Water
 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

Method: 8081A_8082 Analysis Batch: 680-165593

Preparation: 3520C Prep Batch: 680-165426
Dilution: 1.0

Date Analyzed: 04/13/2010 2110 Injection Volume: 2 uL

Date Prepared: 04/12/2010 1730 Result Type: SECONDARY

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene7035 - 120DCB Decachlorobiphenyl4914 - 115

Client Sample ID:

AA2-CON

Lab Sample ID:

680-56602-3

Client Matrix: Solid

Date Sampled: 04/07/2010 1730 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pes	ticides & PCBs (GC)
-------------------------------	---------------------

14.4

Method: Preparation: 8081A_8082

Analysis Batch: 680-165591

% Moisture:

Instrument ID: S0 Initial Weight/Volume: 15

SGM 15.10 g

Dilution:

3550B 100 Prep Batch: 680-165424

Final Weight/Volume: Injection Volume:

5.0 mL 2 uL

Date Analyzed: Date Prepared: 100 Na/13/20

04/13/2010 0935 04/12/2010 1438

Result Type:

PRIMARY

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
PCB-1016		<3800		340	3800
PCB-1221		<7800		560	7800
PCB-1232		<3800		380	3800
PCB-1242		<3800		330	3800
PCB-1248		3300	J	840	3800
PCB-1254		24000		270	3800
PCB-1260		23000		780	3800
PCB-1268		28000		200	3800
Surrogate		%Rec	Qualifier	Accepta	ance Limits
Tetrachloro-m-xylene		0	D	26 - 140)
DCB Decachlorobiphenyl		0	D	50 - 129	e e e e e e e e e e e e e e e e e e e

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID:

AA2-CON

Lab Sample ID:

680-56602-3

Client Matrix:

0 11 1

Solid

% Moisture:

14.4

Date Sampled: 04/07/2010 1730

Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method:

8081A_8082 3550B Analysis Batch: 680-165591

Instrument ID:

SGM

Preparation: Dilution:

3550B

Prep Batch: 680-165424

Initial Weight/Volume:

15.10 g 5.0 mL

Date Analyzed:

100 04/13/2010 0935 SP Daten. 000-100424

Final Weight/Volume: Injection Volume:

5.0 mL 2 uL

Date Prepared:

04/12/2010 1438

Result Type:

SECONDARY

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	0	D	26 - 140
DCB Decachlorobiphenyl	0	D	50 - 129

Client Sample ID:

AA2-CON-FD

Lab Sample ID: 680-56602-4 Date Sampled: 04/07/2010 1730 Client Matrix: Solid % Moisture: 12.8 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC) Method: 8081A_8082 Analysis Batch: 680-165591 Instrument ID: SGM Preparation: 3550B Prep Batch: 680-165424 Initial Weight/Volume: 15.05 g Dilution: 100 Final Weight/Volume: 5.0 mL 04/13/2010 0954 Date Analyzed: Injection Volume: 2 uL 04/12/2010 1438 Date Prepared: Result Type: **PRIMARY** Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL PCB-1016 <3800 330 3800 PCB-1221 <7700 550 7700 PCB-1232 <3800 380 3800 PCB-1242 320 3800 <3800 PCB-1248 5800 820 3800 PCB-1254 31000 260 3800 PCB-1260 29000 770 3800 PCB-1268 24000 190 3800 Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 26 - 140 0 D DCB Decachlorobiphenyl D 0 50 - 129

SGM

15.05 g

5.0 mL

Client: Golder Associates Inc. Job Number: 680-56602-1

Client Sample ID: AA2-CON-FD

Lab Sample ID: 680-56602-4 Date Sampled: 04/07/2010 1730

Client Matrix: Solid % Moisture: 12.8 Date Received: 04/09/2010 0927

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

Method: 8081A_8082 Analysis Batch: 680-165591 Preparation: 3550B Prep Batch: 680-165424

Dilution: 100

04/13/2010 0954 Date Analyzed: Injection Volume: 2 uL 04/12/2010 1438 Date Prepared: Result Type:

SECONDARY

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 0 D 26 - 140 DCB Decachlorobiphenyl 0 D 50 - 129

DATA REPORTING QUALIFIERS

Client: Golder Associates Inc. Job Number: 680-56602-1

Lab Section	Qualifier	Description
GC Semi VOA		
	F	MS or MSD exceeds the control limits
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
	E	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	X	Surrogate is outside control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

QUALITY CONTROL RESULTS

QC Association Summary

		Report Basis			
Lab Sample ID	Client Sample ID	Dasis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 680-165424					
LCS 680-165424/19-A	Lab Control Sample	T	Solid	3550B	
MB 680-165424/18-A	Method Blank	T	Solid	3550B	
680-56602-3	AA2-CON	Т	Solid	3550B	
680-56602-3MS	Matrix Spike	T	Solid	3550B	
680-56602-3MSD	Matrix Spike Duplicate	T	Solid	3550B	
680-56602-4	AA2-CON-FD	T	Solid	3550B	
680-56602-5	SSR1-11-N-10	T	Solid	3550B	
680-56602-6	SSR1-11-S-10	T	Solid	3550B	
680-56602-7	SSR1-11-E-5	Т	Solid	3550B	
680-56602-8	SSR1-11-W-15	Т	Solid	3550B	
680-56602-9	SSR1-11-W-10-3	Т	Solid	3550B	
Prep Batch: 680-165426					
LCS 680-165426/17-A	Lab Control Sample	T	Water	3520C	
MB 680-165426/16-A	Method Blank	T	Water	3520C	
680-56602-1	RB-AA2-CON	T	Water	3520C	
680-56602-2	FB-AA2-CON	T	Water	3520C	
Analysis Batch:680-165572	2				
680-56602-3MS	Matrix Spike	Ţ	Solid	8081A_8082	680-165424
680-56602-3MSD	Matrix Spike Duplicate	Τ,	Solid	8081A_8082	680-165424
680-56602-5	SSR1-11-N-10	T	Solid	8081A_8082	680-165424
680-56602-6	SSR1-11-S-10	T	Solid	8081A_8082	680-165424
680-56602-7	SSR1-11-E-5	T	Solid	8081A_8082	680-165424
Analysis Batch:680-165591	İ				
LCS 680-165424/19-A	Lab Control Sample	Ţ	Solid	8081A_8082	680-165424
MB 680-165424/18-A	Method Blank	T	Solid	8081A_8082	680-165424
680-56602-3	AA2-CON	Τ.	Solid	8081A_8082	680-165424
680-56602-4	AA2-CON-FD	T	Solid	8081A_8082	680-165424
680-56602-8	SSR1-11-W-15	T	Solid	8081A_8082	680-165424
680-56602-9	SSR1-11-W-10-3	Т	Solid	8081A_8082	680-165424
Analysis Batch:680-165593	3				
LCS 680-165426/17-A	Lab Control Sample	Τ.	Water	8081A_8082	680-165426
MB 680-165426/16-A	Method Blank	T .	Water	8081A_8082	680-165426
680-56602-1	RB-AA2-CON	T	Water	8081A_8082	680-165426
680-56602-2	FB-AA2-CON	T	Water	8081A_8082	680-165426

Report Basis

T = Total

Surrogate Recovery Report

8081A 8082 Organochlorine Pesticides & PCBs (GC)

Client Matrix: Solid

		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
680-56602-3	AA2-CON	0D	0D	0D	0D
680-56602-4	AA2-CON-FD	0D	0D	0D	0D
680-56602-5	SSR1-11-N-10	0D	0D	0D	0D
680-56602-6	SSR1-11-S-10	0D	0D	0D	0D
680-56602-7	SSR1-11-E-5	0D	0D	0D	0D
680-56602-8	SSR1-11-W-15	81	79	1170E X 0	1430E X 0
680-56602-9	SSR1-11-W-10-3	42	44	167X	93p
MB 680-165424/18-A		77	84	75	91
LCS 680-165424/19-A		80	81	87	90
680-56602-3 MS	AA2-CON MS	0D	0D	0D	0D
680-56602-3 MSD	AA2-CON MSD	0D	0D	0D	0D

Surrogate	Acceptance Limits
TCX = Tetrachloro-m-xylene	26-140
DCB = DCB Decachlorobiphenyl	50-129

Surrogate Recovery Report

8081A 8082 Organochlorine Pesticides & PCBs (GC)

Client Matrix: Water

		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
680-56602-1	RB-AA2-CON	71	70	15	18
680-56602-2	FB-AA2-CON	70	73	49	58
MB 680-165426/16-A		70	73	80	89
LCS 680-165426/17-A	1	75	76	70	79

Surrogate	Acceptance Limits
TCX = Tetrachloro-m-xylene	35-120
DCB = DCB Decachlorobiphenyl	14-115

Client: Golder Associates Inc. Job Number: 680-56602-1

Method Blank - Batch: 680-165424 Method: 8081A_8082 Preparation: 3550B

Lab Sample ID: MB 680-165424/18-A Analysis Batch: 680-165591 Instrument ID: SGM

Client Matrix: Prep Batch: 680-165424 Solid Lab File ID: md12036.d Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 15.00 g

04/13/2010 0856 Date Analyzed: Final Weight/Volume: 5.0 mL Date Prepared: 04/12/2010 1438 Injection Volume: 2 uL Column ID: **PRIMARY**

Analyte	Result	Qual	MDL	RL
PCB-1016	<33		2.9	33
PCB-1221	<67		4.8	67
PCB-1232	<33		3.3	33
PCB-1242	<33		2.8	33
PCB-1248	<33		7.2	33
PCB-1254	<33		2.3	33
PCB-1260	<33		6.7	33
PCB-1268	<33		1.7	33
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	84		26 - 140	
DCB Decachlorobiphenyl	91		50 - 129	

지수 (1993) (HT) 시발한다면 이 프라이어의 아무리와 아무리는 아무리가 - 1 세한 가입니다 중요. 이 나는 그 나는 다음이다.			
Surrogate	% Rec	Acceptance Limits	
Tetrachloro-m-xylene	77	26 - 140	
DCB Decachlorobiphenyl	75	50 - 129	

Lab Control Sample - Batch: 680-165424 Method: 8081A_8082 Preparation: 3550B

Lab Sample ID: LCS 680-165424/19-A Analysis Batch: 680-165591 Instrument ID: SGM Client Matrix: Solid Prep Batch: 680-165424 Lab File ID: md12037.d Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 15.00 g

Date Analyzed: 04/13/2010 0915 Final Weight/Volume: 5.0 mL Date Prepared: 04/12/2010 1438 Injection Volume: 2 uL

Column ID: **PRIMARY** 1 :--: A -- - 1- -4

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
PCB-1016	333	309	93	43 - 136	
PCB-1260	333	333 291 87 53 - 133			
Surrogate	% R	Rec Acceptance Limits			
Tetrachloro-m-xylene	81	1 26 - 140			
DCB Decachlorobiphenyl	90	90 50 - 129			
Surrogate	% Rec Acceptance Limits				
Tetrachloro-m-xylene	80	0 26 - 140			
DCB Decachlorobiphenyl	87	87 50 - 129			

Client: Golder Associates Inc. Job Number: 680-56602-1

Matrix Spike/ Method: 8081A_8082
Matrix Spike Duplicate Recovery Report - Batch: 680-165424 Preparation: 3550B

MS Lab Sample ID: 680-56602-3 Analysis Batch: 680-165572 Instrument ID: SGM Client Matrix: Solid Prep Batch: 680-165424 Lab File ID: md12050.d Dilution: 100 Initial Weight/Volume: 15.26 g 04/13/2010 1407 Date Analyzed: Final Weight/Volume: 5.0 mL 04/12/2010 1438 Date Prepared: Injection Volume: 2 uL **PRIMARY** Column ID:

 MSD Lab Sample ID:
 680-56602-3
 Analysis Batch:
 680-165572
 Instrument ID:
 SGM

 Client Matrix:
 Solid
 Prep Batch:
 680-165424
 Lab File ID:
 md12051.d

 Dilution:
 100
 Initial Weight/Volume:
 15.21
 g

 Date Analyzed:
 04/13/2010 1426
 Final Weight/Volume:
 5.0 mL

 Date Prepared:
 04/12/2010 1438
 Injection Volume:
 2 uL

 Column ID:
 PRIMARY

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual PCB-1016 0 0 43 - 136 F NC 50 F PCB-1260 -376 169 53 - 133 9 50 4 4 Surrogate MS % Rec MSD % Rec Acceptance Limits 0 D 0 Tetrachloro-m-xylene D 26 - 140 DCB Decachlorobiphenyl 0 D 0 D 50 - 129 Surrogate MS % Rec MSD % Rec Acceptance Limits Tetrachloro-m-xylene 0 D 0 D 26 - 140 DCB Decachlorobiphenyl 0 D 0 D 50 - 129

Client: Golder Associates Inc. Job Number: 680-56602-1

Method Blank - Batch: 680-165426 Method: 8081A_8082 Preparation: 3520C

Lab Sample ID: MB 680-165426/16-A Analysis Batch: 680-165593 Instrument ID: SGM

md12066.d Client Matrix: Water Prep Batch: 680-165426 Lab File ID: Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

04/13/2010 1914 Date Analyzed: Final Weight/Volume: 10 mL 04/12/2010 1730 Date Prepared: Injection Volume: 2 uL Column ID: PRIMARY

RL Analyte Result Qual MDL PCB-1016 0.071 1.0 <1.0 PCB-1221 <2.0 0.28 2.0 PCB-1232 <1.0 0.11 1.0 PCB-1242 <1.0 0.18 1.0 PCB-1248 <1.0 0.36 1.0 PCB-1254 <1.0 0.26 1.0 PCB-1260 <1.0 0.20 1.0 PCB-1268 <1.0 0.26 1.0 Surrogate % Rec Acceptance Limits 35 - 120 Tetrachloro-m-xylene 73 DCB Decachlorobiphenyl 89 14 - 115

Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 70 35 - 120 DCB Decachlorobiphenyl 80 14 - 115

Lab Control Sample - Batch: 680-165426 Method: 8081A_8082

Preparation: 3520C

Lab Sample ID: LCS 680-165426/17-A Analysis Batch: 680-165593 Instrument ID: SGM Client Matrix: Water Prep Batch: 680-165426 Lab File ID: md12067.d

Dilution: Units: ug/L Initial Weight/Volume: 1000 mL Date Analyzed: 04/13/2010 1933 Final Weight/Volume: 10 mL

Date Prepared: 04/12/2010 1730 Injection Volume: 2 uL Column ID: PRIMARY

Analyte Spike Amount % Rec. Limit Result Qual PCB-1016 57 - 124 10.0 10.8 108 PCB-1260 10.0 9.50 95 58 - 124 Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 76 35 - 120 DCB Decachlorobiphenyl 79 14 - 115 Surrogate % Rec Acceptance Limits

Tetrachloro-m-xylene 75 35 - 120 DCB Decachlorobiphenyl 70 14 - 115

Serial Number 025070

estAmerica				RD.	X	TestAmeri 5102 LaRo Savannah,	che Aven	ue		Website: www Phone: (912) Fax: (912) 35:	354-7858	icainc.co	m
G2174111	SIICU					> Alternate L	aboratory	Name/Lo	cation		· · · · · ·		
THE LEADER IN ENVIRON	MENTAL TESTING									Phone: Fax:			
OJECT REFERENCE SOLUTIA AMIS	PROJECT NO.	PROJECT LOCATION (STATE)		ATRIX YPE		39		REQUIR	ED ANALYSIS		PAGE		OF
L (LAB) PROJECT MANAGER	P.O. NUMBER	CONTRACT NO.	TE		()	. 2					STANDAI DELIVER		श
IENT (SITE) PM RICHARI	CLIENT PHONE 8703	CLIENT FAX	INDICATE		OLVEN	PCB5 1 9082						E DUE	
LENT NAME_ / GOLDE	R TRICHARDS Q	Gouralian	3 GRAB (G)	QI)	NONAQUEOUS LIQUID (OIL, SOLVENT,)	680 1 80814					EXPEDIT DELIVER (SURCHA	Y NRGE)	
IENT ADDRESS 3730 CHA	mbles toker al	Acthora GA	COMPOSITE (C) OR GR AQUEOUS (WATER)	EMISO	USTIG	4 4	Michael Ma River	и дине сустем.				OF COOL	ERS SUBMITTED
OMPANY CONTRACTING THIS WO	PRK (if applicable)	30341	OSITE	ORS	OUEO	Parks Marks		in aprile system. - Page Sister - Page Score			PER SHIF	PMENT;	1
SAMPLE	SAMPLE IDENTIFICATION	N	COME	SOLIC	NON		NUMBI	ER OF CON	ITAINERS SUBMITTED		1	REMA	RKS
19:45 (UB-AA2-CON		8			l l				4	LEV	EL	W
4010 18:50 F	B-AAZ-CON		7			1 1					V.	Adal	
119/10 17:30	AAR-CON		4	1	44						rem	14	us/auso
4/07/10 17:30	AAZ-CON-FD)	C	Υ_	11	1 1							
4/1/10 13:52	SSR1-11-N-10	s. 20. http://doi.org/10.000/	G	X									
4/2/10 14:00 5	SR1-11-5-10		G	*									
47/10 17:41	SSR1-11-E-5		G	1		12				 	7 16 02	JAR	FARED
4/2/10 17:55	SSR1-11-W-15		G	۲		1/3				<u> </u>			6805 8
410 10 13:50 C	3R1-11-W-10-3		G	X		1 1						^	
11-0-11-0								-		++++	+ Le	re[1
RELUNCTURSHED BY: (SUCHATURE)	DATE 4/8/10 1/6:00	RELINQUISHED BY: (SIG	SNATURE)			DATE	1	IME	RELINQUISHED BY:	(SIGNATURE)	D/	TE.	TIME
ACCEIVED BY: (SI NATURE)	74810 16:00 DATE TIME	RECEIVED BY: (SIGNATUR	RE)			DATE	1	IME	RECEIVED BY: (SIGN	ATURE)	DA	NTE	TIME
		-	LABOR	ATOR	Y USE	L ONLY			<u> L</u>				
RECEIVED FOR LABORATORY BY: (SIGNATURE)	DATE TIME	CUSTODY INTACT YES O NO O	CUST	ODY		SAVANNAH LOG NO. 68 5660)()- L	ABORATOF	RY REMARKS T	3.5	3		

Login Sample Receipt Check List

Client: Golder Associates Inc. Job Number: 680-56602-1

Login Number: 56602 List Source: TestAmerica Savannah

Creator: Daughtry, Beth

List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Is the Field Sampler's name present on COC?	False
Sample Preservation Verified	True

ANALYTICAL REPORT

Job Number: 680-56602-2

Job Description: Anniston Landfill Site

For:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, GA 30341

Attention: Mr. Tim Richards

Lideja grizia

Approved for release Lidya Gulizia Project Manager I 4/20/2010 5:44 PM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
04/20/2010

cc: Mr. Steve Moeller

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

Job Narrative 680-56602-2

Receipt

All samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 680: Internal standard response for the following sample(s) exceeded the upper control limit: RB-AA2-CON (680-56602-1). As such, the sample results may be biased low.

Method(s) 680: Sample AA2-CON-FD (680-56602-4) was diluted due to abundance of target analytes. As such, surrogate recoveries are not reported, and elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Comments

No additional comments.

METHOD SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-2

Description	Lab Location	Method	Preparation Method
Matrix Solid	=		
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680	
Extraction (Solid PCBs)	TAL SAV		EPA 680
Matrix Water			
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680	
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV		EPA 680

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-2

Method	Analyst	Analyst ID	
EPA 680	Chamberlain, Kim	KAC	
EPA 680	Davis, Nancy	ND	

SAMPLE SUMMARY

Client: Golder Associates Inc. Job Number: 680-56602-2

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-56602-1	RB-AA2-CON	Water	04/07/2010 1845	04/09/2010 0927
680-56602-2	FB-AA2-CON	Water	04/07/2010 1850	04/09/2010 0927
680-56602-3	AA2-CON	Solid	04/07/2010 1730	04/09/2010 0927
680-56602-4	AA2-CON-FD	Solid	04/07/2010 1730	04/09/2010 0927
2				

SAMPLE RESULTS

Client: Golder Associates Inc. Job Number: 680-56602-2

Client Sample ID:

RB-AA2-CON

Lab Sample ID: Client Matrix:

680-56602-1

Water

Date Sampled: 04/07/2010 1845 Date Received: 04/09/2010 0927

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Preparation: 680

1.0

Analysis Batch: 680-165611 Prep Batch: 680-165312

Instrument ID: Lab File ID:

MSF N/A

Dilution: Date Analyzed:

04/13/2010 1704

Initial Weight/Volume: Final Weight/Volume: 1020 mL 1 mL

Date Prepared:

04/09/2010 1703

Injection Volume:

Analyte Result (ug/L) Qualifier MDL RL Monochlorobiphenyl <0.098 0.0055 0.098 <0.098 Dichlorobiphenyl 0.0053 0.098 Trichlorobiphenyl <0.098 0.0064 0.098 <0.20 Tetrachlorobiphenyl 0.013 0.20 Pentachlorobiphenyl <0.20 0.014 0.20 Hexachlorobiphenyl < 0.20 0.015 0.20 Heptachlorobiphenyl < 0.29 0.029 0.29 Octachlorobiphenyl <0.29 0.037 0.29 Nonachlorobiphenyl < 0.49 0.048 0.49 DCB Decachlorobiphenyl < 0.49 0.069 0.49 Surrogate %Rec Qualifier

Decachlorobiphenyl-13C12

89

25 - 113

Acceptance Limits

Job Number: 680-56602-2 Client: Golder Associates Inc.

Client Sample ID: FB-AA2-CON

Lab Sample ID: 680-56602-2

Date Sampled: 04/07/2010 1850 Client Matrix: Water Date Received: 04/09/2010 0927

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Preparation: 680

Dilution: 1.0

04/13/2010 1736 Date Analyzed: 04/09/2010 1703 Date Prepared:

Analysis Batch: 680-165611

Instrument ID: Prep Batch: 680-165312 Lab File ID:

N/A Initial Weight/Volume: 1030 mL Final Weight/Volume: 1 mL

MSF

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	<0.097		0.0054	0.097
Dichlorobiphenyl	<0.097		0.0052	0.097
Trichlorobiphenyl	<0.097		0.0063	0.097
Tetrachlorobiphenyl	<0.19		0.013	0.19
Pentachlorobiphenyl	<0.19		0.014	0.19
Hexachlorobiphenyl	<0.19		0.015	0.19
-leptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.037	0.29
Nonachlorobiphenyl	<0.49		0.048	0.49
DCB Decachlorobiphenyl	<0.49		0.068	0.49
Surrogate	%Rec	Qualifier	Acceptar	nce Limits
Decachlorobiphenyl-13C12	87		25 - 113	

Client: Golder Associates Inc. Job Number: 680-56602-2

Client Sample ID:

AA2-CON

Lab Sample ID:

Method:

Preparation:

680-56602-3

Client Matrix:

680

Solid % Moisture: 14.4 Date Sampled: 04/07/2010 1730 Date Received: 04/09/2010 0927

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

680 Analysis Batch: 680-165897

Prep Batch: 680-165422

Instrument ID: Lab File ID:

MSF N/A

Dilution: 50 04/15/2010 1523 Date Analyzed:

30.06 g Initial Weight/Volume: Final Weight/Volume:

1.0 mL

04/12/2010 1342 Date Prepared: Injection Volume:

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Monochlorobiphenyl		<190		11	190
Dichlorobiphenyl		1300		20	190
Trichlorobiphenyl		5500		9.9	190
Tetrachlorobiphenyl		7000		22	390
Pentachlorobiphenyl		9400		20	390
Hexachlorobiphenyl		13000		19	390
Heptachlorobiphenyl		12000		29	580
Octachlorobiphenyl		5900		31	580
Nonachlorobiphenyl		870	J	54	990
DCB Decachlorobiphenyl		560	J	48	990
Surrogate		%Rec	Qualifier	Accept	ance Limits
Decachlorobiphenyl-13C12		0	D	30 - 13	0

Job Number: 680-56602-2 Client: Golder Associates Inc.

Client Sample ID:

AA2-CON-FD

Lab Sample ID:

680-56602-4

Client Matrix: Solid % Moisture: 12.8 Date Received: 04/09/2010 0927

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: 680 Preparation: 680 Analysis Batch: 680-165897

Instrument ID: Lab File ID:

MSF N/A

Dilution: 10 Prep Batch: 680-165422

Initial Weight/Volume: Final Weight/Volume:

30.29 g 1.0 mL

Date Sampled: 04/07/2010 1730

Date Analyzed:

04/15/2010 1106

Date Prepared:

04/12/2010 1342

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Monochlorobiphenyl		7.4	J	2.2	37
Dichlorobiphenyl		54		4.0	37
Trichlorobiphenyl		390		1.9	37
Tetrachlorobiphenyl		1800		4.2	76
Pentachlorobiphenyl		3000		3.9	76
Hexachlorobiphenyl		4500		3.7	76
Heptachlorobiphenyl		3000		5.7	110
Octachlorobiphenyl		1400		6.0	110
Nonachlorobiphenyl		380		11	190
DCB Decachlorobiphenyl		330		9.4	190
Surrogate		%Rec	Qualifier	Accepta	ince Limits
Decachlorobiphenyl-13C12		0	D	30 - 130)

DATA REPORTING QUALIFIERS

Client: Golder Associates Inc. Job Number: 680-56602-2

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

QUALITY CONTROL RESULTS

Client: Golder Associates Inc. Job Number: 680-56602-2

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-165312	2				
LCS 680-165312/10-A	Lab Control Sample	T	Water	680	
MB 680-165312/9-A	Method Blank	T	Water	680	
680-56602-1	RB-AA2-CON	T	Water	680	
680-56602-2	FB-AA2-CON	T	Water	680	
Prep Batch: 680-165422	2				
LCS 680-165422/9-A	Lab Control Sample	T	Solid	680	
MB 680-165422/8-A	Method Blank	Т	Solid	680	
680-56602-3	AA2-CON	T	Solid	680	
680-56602-4	AA2-CON-FD	T	Solid	680	
680-56602-5	SSR1-11-N-10	T	Solid	680	
680-56602-6	SSR1-11-S-10	Ţ	Solid	680	
680-56602-7	SSR1-11-E-5	T	Solid	680	
680-56602-8	SSR1-11-W-15	T	Solid	680	
680-56602-9	SSR1-11-W-10-3	T	Solid	680	
Analysis Batch:680-165	6611				
LCS 680-165312/10-A	Lab Control Sample	Т	Water	680	680-165312
MB 680-165312/9-A	Method Blank	T	Water	680	680-165312
680-56602-1	RB-AA2-CON	T	Water	680	680-165312
680-56602-2	FB-AA2-CON	T	Water	680	680-165312
Analysis Batch:680-165	5789				
LCS 680-165422/9-A	Lab Control Sample	T -2	Solid	680	680-165422
MB 680-165422/8-A	Method Blank	T	Solid	680	680-165422
680-56602-9	SSR1-11-W-10-3	Т	Solid	680	680-165422
Analysis Batch:680-165	5897				
680-56602-3	AA2-CON	Ť	Solid	680	680-165422
680-56602-4	AA2-CON-FD	T	Solid	680	680-165422
680-56602-5	SSR1-11-N-10	Т	Solid	680	680-165422
680-56602-6	SSR1-11-S-10	Т	Solid	680	680-165422
680-56602-7	SSR1-11-E-5	T	Solid	680	680-165422
680-56602-8	SSR1-11-W-15	T	Solid	680	680-165422

Report Basis

T = Total

Client: Golder Associates Inc. Job Number: 680-56602-2

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Solid

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-56602-3	AA2-CON	0D
680-56602-4	AA2-CON-FD	0D
680-56602-5	SSR1-11-N-10	0D
680-56602-6	SSR1-11-S-10	0D
680-56602-7	SSR1-11-E-5	0D
680-56602-8	SSR1-11-W-15	0D
680-56602-9	SSR1-11-W-10-3	81
MB 680-165422/8-A		68
LCS 680-165422/9-A		86

Surrogate Acceptance Limits

13DCB = Decachlorobiphenyl-13C12

30-130

Client: Golder Associates Inc. Job Number: 680-56602-2

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Water

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-56602-1	RB-AA2-CON	89
680-56602-2	FB-AA2-CON	87
MB 680-165312/9-A		100
LCS 680-165312/10-A		109

Surrogate Acceptance Limits

13DCB = Decachlorobiphenyl-13C12 25-113

Quality Control Results

Client: Golder Associates Inc. Job Number: 680-56602-2

Method Blank - Batch: 680-165312 Method: 680
Preparation: 680

Lab Sample ID: MB 680-165312/9-A Analysis Batch: 680-165611 Instrument ID: MSF

Client Matrix: Water Prep Batch: 680-165312 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL Date Analyzed: 04/13/2010 1410 Final Weight/Volume: 1 mL

Date Prepared: 04/09/2010 1703 Injection Volume:

Analyte	Result	Qual	MDL	RL
Monochlorobiphenyl	<0.10		0.0056	0.10
Dichlorobiphenyl	<0.10		0.0054	0.10
Trichlorobiphenyl	<0.10		0.0065	0.10
Tetrachlorobiphenyl	<0.20		0.013	0.20
Pentachlorobiphenyl	<0.20		0.014	0.20
Hexachlorobiphenyl	<0.20		0.015	0.20
Heptachlorobiphenyl	<0.30		0.030	0.30
Octachlorobiphenyl	<0.30		0.038	0.30
Nonachlorobiphenyl	<0.50		0.049	0.50
DCB Decachlorobiphenyl	<0.50		0.070	0.50
Surrogate	% Rec		Acceptance Limits	
Decachlorobiphenyl-13C12	100		25 - 113	

Lab Control Sample - Batch: 680-165312 Method: 680
Preparation: 680

Lab Sample ID: LCS 680-165312/10-A Analysis Batch: 680-165611 Instrument ID: MSF

Client Matrix: Water Prep Batch: 680-165312 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 04/13/2010 1515 Final Weight/Volume: 1 mL

Date Prepared: 04/09/2010 1703 Injection Volume:

Analyte Spike Amount Result % Rec. Limit Qual 10 - 125 Monochlorobiphenyl 2.00 1.55 77 Dichlorobiphenyl 2.00 1.75 88 10 - 110 Trichlorobiphenyl 2.00 1.82 91 17 - 110 Tetrachlorobiphenyl 4.00 3.63 91 18 - 110 Pentachlorobiphenyl 4.00 3.95 99 34 - 110 Hexachlorobiphenyl 4.00 3.85 96 31 - 110 Heptachlorobiphenyl 6.00 5.92 99 33 - 110 Octachlorobiphenyl 6.00 6.16 103 33 - 110 26 - 115 DCB Decachlorobiphenyl 10.0 9.86 99 Surrogate % Rec Acceptance Limits

Decachlorobiphenyl-13C12 109 25 - 113

Quality Control Results

Client: Golder Associates Inc. Job Number: 680-56602-2

Method Blank - Batch: 680-165422 Method: 680
Preparation: 680

Lab Sample ID: MB 680-165422/8-A Analysis Batch: 680-165789 Instrument ID: MSF

Client Matrix: Solid Prep Batch: 680-165422 Lab File ID: N/A
Dilution: 1.0 Units: ug/Kg Initial Weight/Volume:

Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 30.00 g
Date Analyzed: 04/14/2010 1230 Final Weight/Volume: 1.0 mL

Date Prepared: 04/12/2010 1342 Injection Volume:

Analyte	Result	Qual	MDL	RL
Monochlorobiphenyl	<3.3		0.19	3.3
Dichlorobiphenyl	<3.3		0.35	3.3
Trichlorobiphenyl	<3.3		0.17	3.3
Tetrachlorobiphenyl	<6.7		0.37	6.7
Pentachlorobiphenyl	<6.7		0.34	6.7
Hexachlorobiphenyl	<6.7		0.33	6.7
Heptachlorobiphenyl	<10		0.50	10
Octachlorobiphenyl	<10		0.53	10
Nonachlorobiphenyl	<17		0.93	17
DCB Decachlorobiphenyl	<17		0.83	17
Surrogate	% Rec		Acceptance Limits	
Decachlorobiphenyl-13C12	68		30 - 130	

Lab Control Sample - Batch: 680-165422 Method: 680
Preparation: 680

Lab Sample ID: LCS 680-165422/9-A Analysis Batch: 680-165789 Instrument ID: MSF

Client Matrix: Solid Prep Batch: 680-165422 Lab File ID: N/A

Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 30.00 g
Date Analyzed: 04/14/2010 1302 Final Weight/Volume: 1.0 mL

Date Prepared: 04/12/2010 1342 Injection Volume:

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Monochlorobiphenyl	66.7	44.6	67	30 - 130	
Dichlorobiphenyl	66.7	47.8	72	30 - 130	
Trichlorobiphenyl	66.7	49.8	75	30 - 130	
Tetrachlorobiphenyl	133	98.8	74	40 - 140	
Pentachlorobiphenyl	133	107	80	40 - 140	
Hexachlorobiphenyl	133	105	79	40 - 140	
Heptachlorobiphenyl	200	161	80	40 - 140	
Octachlorobiphenyl	200	163	82	40 - 140	
DCB Decachlorobiphenyl	333	254	76	30 - 130	
Surrogate	% F	tec	Acc	ceptance Limits	
Decachlorohinhenyl-13C12	86			30 130	

Decachlorobiphenyl-13C12 86 30 - 130

Serial Number 025070

analysis request and chain of custody record				>>	5102 La Savann	Roche and GA	31404		Website: ww Phone: (912 Fax: (912) 3	354-7858		om	
				0	Alterna	e Labor	atory Name/Lo	cation	Phone:				
THE LEADER IN ENVIRONMENTAL TESTING	DOO FOT LOCATION	1		1	-				Fax:	Levor			_
OJECT REFERENCE ANNION PROJECT NO.	PROJECT LOCATION (STATE)		ATRIX TYPE			9	REQUIR	ED ANALYSIS		PAGE		OF	
L (LAB) PROJECT MANAGER	CONTRACT NO.	ATE		ΛT,)	30	776				STANDA DELIVER		RT 🔾	
JENT (SITE) PM QICHARDS 845-300-8703	CLIENT FAX	(G) INDICATE		SOLVE		7202				DAT EXPEDIT	E DUE	DRT	
CLOCK / GOLDER TRUMAPOS QG	soud.Com	9	9	NONAQUEOUS LIQUID (OIL, SOLVENT,)	089	4 igns 4				DELIVEF (SURCH	ry Arge)		
JENT ADDRESS 2730 C. Handles trough Ol. A	cthora GA	C) OF ATER	MISOI	SLIO	- 31						E DUE _	71.4110	_
DMPANY CONTRACTING THIS WORK (if applicable)	30341	COMPOSITE (C) OR GR. AQUEOUS (WATER)	O OR SEI	AQUEOU	Ne N		To the second se			PER SHI	OF COO! PMENT:	LERS SUBMITTE)
SAMPLE SAMPLE IDENTIFICATION		AQUE ON	SOLI	NON		N	IUMBER OF CON	ITAINERS SUBMIT	TTED		REMA	RKS	1
18:45 RB-AA2-CON		X								rlev	EL		
45/10 18:50 FB-AAZ-CON		×								V.			1
119/10 17:30 AAZ-CON		<u>C</u>	V							pam	and E	MS/MSD	1
10:20 NAZ -/AN-FD		C	4								0		
41/10 13:52 SSRI-11-N-10		G	×									907) 900 on	1
4/2/10 14:00 SSRI-11-5-10		G	X										1
4/2/10 17:41 SSR1-11-E-5		G	7		12				\	7 16 02	JAR	FA	1
4/2/10 17:55 SSRI -11-W-15		G	×		1/3				K			680 F 8	o i
410 13:50 SRI-11-W-10-3		G	X		i II						^		۱
118110 1										X I	w.	. Art	1
										r ve	No C	The state of the s	1
							100000						1
RELUNCIONSHED BY: (SIGNATURE) DATE 4/8/10 1/6:00	RELINQUISHED BY: (sign	NATURE)			DA		TIME	RELINQUISHE	ED BY: (SIGNATURE)	D	ATE	TIME	
REGENED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURI	E)			DA	E	TIME	RECEIVED BY	ή: (Signature)	D	ATE	TIME	1
		LABOF						\					1
(SIGNATURE)	CUSTODY INTACT YES O NO O	CUST	ODY NO.	L	SAVANNAH LOG NO. (566	n911)-	LABORATOF	RY REMARKS	Temp ₃ .	3			

Login Sample Receipt Check List

Client: Golder Associates Inc. Job Number: 680-56602-2

Login Number: 56602 List Source: TestAmerica Savannah

Creator: Daughtry, Beth List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	N/A
Samples do not require splitting or compositing.	N/A
Is the Field Sampler's name present on COC?	False
Sample Preservation Verified	True

ANALYTICAL REPORT

Job Number: 680-57431-1

Job Description: Anniston Landfill Seep 5/6/10

For:

Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, GA 30341

Attention: Mr. Tim Richards

Lideja grizia

Approved for release Lidya Gulizia Project Manager I 5/18/2010 9:59 AM

Lidya Gulizia
Project Manager I
lidya.gulizia@testamericainc.com
05/18/2010

cc: Ms. Lori Anne Hendel Mr. Steve Moeller

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

Job Narrative 680-57431-1 / Final Report (5/18/10)

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 167912 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8270C: The matrix spike (MS) has surrogates outside QC limits. The original sample is within QC limits and the data has been reported.

Method(s) 8270C: The surrogate recovery for the blank associated with batch 167912 was outside recovery limits. All associated sample surrogates fell within acceptance criteria; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Comments

No additional comments.

METHOD SUMMARY

Client: Golder Associates Inc. Job Number: 680-57431-1

Description	Lab Location	Method Preparat	ion Method
Matrix Water			
Volatile Organic Compounds (GC/MS)	TAL SAV	SW846 8260B	
Purge and Trap	TAL SAV	SW846 56	030B
Polychlorinated Biphenyls (PCBs) (GC/MS)	TAL SAV	EPA 680	
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV	EPA 680	
Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	TAL SAV	SW846 8270C	
Semivolatile Organic Compounds (GC/MS SIM)	TAL SAV	SW846 8270C	
Liquid-Liquid Extraction (Continuous)	TAL SAV	SW846 3	520C
Liquid-Liquid Extraction (Continuous)	TAL SAV	SW846 3	520C
Organochlorine Pesticides & PCBs (GC)	TAL SAV	SW846 8081A_8082	
Liquid-Liquid Extraction (Continuous)	TAL SAV	SW846 3	520C
Organophosphorous Pesticides (GC)	TAL SAV	SW846 8141A	
Liquid-Liquid Extraction (Continuous)	TAL SAV	SW846 3	520C
Metals (ICP)	TAL SAV	SW846 6010B	
Sample Filtration, Field	TAL SAV	FIELD_FL	TRD
Preparation, Total Recoverable or Dissolved Metals	TAL SAV	SW846 30	005A
Mercury (CVAA)	TAL SAV	SW846 7470A	
Sample Filtration, Field	TAL SAV	FIELD_FL	TRD .
Preparation, Mercury	TAL SAV	SW846 74	470A

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Golder Associates Inc. Job Number: 680-57431-1

Method	Analyst	Analyst ID
SW846 8260B	Bearden, Robert	RB
EPA 680	Davis, Nancy	ND
SW846 8270C SW846 8270C	Davis, Nancy Haynes, Carion	ND CRH
SW846 8081A_8082	Smith, Crystal	CAS
SW846 8141A	Kellar, Joshua	JK
SW846 6010B	Bland, Brian	ВСВ
SW846 7470A	Robertson, Bryn	BR

SAMPLE SUMMARY

Client: Golder Associates Inc. Job Number: 680-57431-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-57431-1	SEEP-0.1 um	Water	05/06/2010 1600	05/07/2010 1156
680-57431-2TB	Trip Blank-1	Water	05/06/2010 0000	05/07/2010 1156
680-57431-3	SEEP-1	Water	05/06/2010 1605	05/07/2010 1156
680-57431-4FD	SEEP-1 FD	Water	05/06/2010 0000	05/07/2010 1156
680-57431-5FB	FIELD BLANK-1	Water	05/06/2010 1620	05/07/2010 1156

SAMPLE RESULTS

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: Trip Blank-1

Lab Sample ID: 680-57431-2TB Date Sampled: 05/06/2010 0000

Client Matrix: Water Date Received: 05/07/2010 1156

8260B \	/olatile	Organic	Compounds	(GC/MS)
---------	----------	---------	-----------	---------

 Method:
 8260B
 Analysis Batch: 680-168185
 Instrument ID:
 MSO

 Preparation:
 5030B
 Lab File ID:
 o0504.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1505 Final Weight/Volume: 5 mL 05/11/2010 1505

Analyte	Result (ug/L)	Qualifier	MDL	RL
Methylene Chloride	<5.0		1.0	5.0
1,1,2,2-Tetrachloroethane	<1.0		0.18	1.0
Chlorobenzene	<1.0		0.25	1.0
Isopropylbenzene	<1.0		0.10	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	102		75 - 120
4-Bromofluorobenzene	88		75 - 120
Dibromofluoromethane	100		75 - 121

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1

Lab Sample ID: 680-57431-3 Date Sampled: 05/06/2010 1605

Client Matrix: Water Date Received: 05/07/2010 1156

8260B Volat	le Organio	Compounds	(GC/MS)
-------------	------------	-----------	---------

 Method:
 8260B
 Analysis Batch: 680-168185
 Instrument ID:
 MSO

 Preparation:
 5030B
 Lab File ID:
 o0506.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1534 Final Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1534 Final Weight/Volume: 5 mL

Date Prepared: 05/11/2010 1534

Result (ug/L) Qualifier RL Analyte MDL Methylene Chloride <5.0 1.0 5.0 1,1,2,2-Tetrachloroethane <1.0 0.18 1.0 <1.0 0.25 1.0 Chlorobenzene Isopropylbenzene <1.0 0.10 1.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 Toluene-d8 (Surr)
 102
 75 - 120

 4-Bromofluorobenzene
 88
 75 - 120

 Dibromofluoromethane
 101
 75 - 121

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1 FD

Lab Sample ID: 680-57431-4FD Date Sampled: 05/06/2010 0000

Client Matrix: Water Date Received: 05/07/2010 1156

8260B \	/olatile	Organic	Compounds	(GC/MS)
---------	----------	---------	-----------	---------

 Method:
 8260B
 Analysis Batch: 680-168185
 Instrument ID:
 MSO

 Preparation:
 5030B
 Lab File ID:
 o0512.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1700 Final Weight/Volume: 5 mL

 Date Analyzed:
 05/11/2010 1700
 Final Weight/Volume:
 5 mL

 Date Prepared:
 05/11/2010 1700
 1700

Analyte	Result (ug/L)	Qualifier	MDL	RL
Methylene Chloride	<5.0		1.0	5.0
1,1,2,2-Tetrachloroethane	<1.0		0.18	1.0
Chlorobenzene	<1.0		0.25	1.0
Isopropylbenzene	<1.0		0.10	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	102		75 - 120
4-Bromofluorobenzene	87		75 - 120
Dibromofluoromethane	103		75 - 121

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

8260B Volatile Organic Compounds (GC/MS)

 Method:
 8260B
 Analysis Batch: 680-168185
 Instrument ID:
 MSO

 Preparation:
 5030B
 Lab File ID:
 o0502.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1436 Final Weight/Volume: 5 mL

Date Analyzed: 05/11/2010 1436 Final Weight/Volume: 5 mL 05/11/2010 1436

Result (ug/L) Qualifier RL Analyte MDL Methylene Chloride <5.0 1.0 5.0 1,1,2,2-Tetrachloroethane <1.0 0.18 1.0 <1.0 0.25 1.0 Chlorobenzene Isopropylbenzene 0.10 1.0 <1.0

Surrogate%RecQualifierAcceptance LimitsToluene-d8 (Surr)10175 - 1204-Bromofluorobenzene8775 - 120Dibromofluoromethane10275 - 121

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-0.1 um

Lab Sample ID:

Date Analyzed:

Date Prepared:

680-57431-1

Client Matrix:

Water

Date Sampled: 05/06/2010 1600

Date Received: 05/07/2010 1156

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	-----------	--------	---------

Method: 680 Preparation: Dilution:

680

1.0

05/10/2010 2241 05/08/2010 1209

Prep Batch: 680-167910

Analysis Batch: 680-168269

Instrument ID: Lab File ID:

MSF N/A

Initial Weight/Volume: Final Weight/Volume:

1050 mL 1 mL

Result (ug/L)	Qualifier	MDL	RL
<0.095		0.0053	0.095
< 0.095		0.0051	0.095
<0.095		0.0062	0.095
<0.19		0.012	0.19
<0.19		0.013	0.19
<0.19		0.014	0.19
<0.29		0.029	0.29
<0.29		0.036	0.29
<0.48		0.047	0.48
<0.48		0.067	0.48
%Rec	Qualifier	Acceptan	ce Limits
38		25 - 113	
	<0.095 <0.095 <0.095 <0.19 <0.19 <0.19 <0.29 <0.29 <0.48 <0.48	<0.095 <0.095 <0.095 <0.19 <0.19 <0.19 <0.29 <0.29 <0.48 <0.48	<0.095

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1

Lab Sample ID:

680-57431-3

Client Matrix:

Water

Date Sampled: 05/06/2010 1605

Date Received: 05/07/2010 1156

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Method: Preparation: 680 680 Analysis Batch: 680-168269

Instrument ID: Lab File ID:

MSF N/A

Dilution:

1.0 05/10/2010 2313 Prep Batch: 680-167910

Initial Weight/Volume: Final Weight/Volume:

1050 mL 1 mL

Date Analyzed: Date Prepared:

05/08/2010 1209

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	0.38		0.0053	0.095
Dichlorobiphenyl	0.19		0.0051	0.095
Trichlorobiphenyl	0.017	J	0.0062	0.095
Tetrachlorobiphenyl	<0.19		0.012	0.19
Pentachlorobiphenyl	<0.19		0.013	0.19
Hexachlorobiphenyl	<0.19		0.014	0.19
Heptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.036	0.29
Nonachlorobiphenyl	<0.48		0.047	0.48
DCB Decachlorobiphenyl	<0.48		0.067	0.48
Surrogate	%Rec	Qualifier	Acceptar	nce Limits
Decachlorobiphenyl-13C12	46		25 - 113	

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1 FD

Lab Sample ID:

680-57431-4FD

Client Matrix:

Water

Date Sampled: 05/06/2010 0000

Date Received: 05/07/2010 1156

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	-----------	--------	---------

Method: Preparation: 680 680 1.0 Analysis Batch: 680-168269 Prep Batch: 680-167910

Instrument ID: Lab File ID: MSF N/A 1050 mL

Dilution: 1.0

Date Analyzed: 05/10/2010 2345

Date Prepared: 05/08/2010 1209

Initial Weight/Volume: Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	0.38		0.0053	0.095
Dichlorobiphenyl	0.18		0.0051	0.095
Trichlorobiphenyl	0.015	J	0.0062	0.095
Tetrachlorobiphenyl	<0.19		0.012	0.19
Pentachlorobiphenyl	<0.19		0.013	0.19
Hexachlorobiphenyl	<0.19		0.014	0.19
Heptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.036	0.29
Nonachlorobiphenyl	<0.48		0.047	0.48
DCB Decachlorobiphenyl	<0.48		0.067	0.48
Surrogate	%Rec	Qualifier	Acceptar	ice Limits
Decachlorobiphenyl-13C12	41		25 - 113	

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

FIELD BLANK-1

Lab Sample ID:

680-57431-5FB

Client Matrix: Water Date Sampled: 05/06/2010 1620 Date Received: 05/07/2010 1156

680 Polychlorinated	Biphenyls	(PCBs)	(GC/MS)
---------------------	-----------	--------	---------

Method: Preparation: Dilution:

Date Analyzed:

Date Prepared:

680 680

05/11/2010 0018

1.0

05/08/2010 1209

Analysis Batch: 680-168269

Prep Batch: 680-167910

Instrument ID: Lab File ID:

MSF N/A Initial Weight/Volume: 1050 mL

Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Monochlorobiphenyl	<0.095		0.0053	0.095
Dichlorobiphenyl	<0.095		0.0051	0.095
Trichlorobiphenyl	<0.095		0.0062	0.095
Tetrachlorobiphenyl	<0.19		0.012	0.19
Pentachlorobiphenyl	<0.19		0.013	0.19
Hexachlorobiphenyl	<0.19		0.014	0.19
Heptachlorobiphenyl	<0.29		0.029	0.29
Octachlorobiphenyl	<0.29		0.036	0.29
Nonachlorobiphenyl	<0.48		0.047	0.48
DCB Decachlorobiphenyl	<0.48		0.067	0.48
Surrogate	%Rec	Qualifier	Acceptar	nce Limits
Decachlorobiphenyl-13C12	45		25 - 113	

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1

Lab Sample ID: 680-57431-3 Date Sampled: 05/06/2010 1605

Client Matrix: Water Date Received: 05/07/2010 1156

	91 2 C 2 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C				
	8270C Semivola	tile Compounds by Gas Chromatogra	aphy/Mass Spe	ctrometry (GC/MS)	
Method:	8270C	Analysis Batch: 680-168320	Inst	rument ID:	MSG
Preparation:	3520C	Prep Batch: 680-167912	Lab	File ID:	g1207a.d
Dilution:	1.0		Initi	al Weight/Volume:	500 mL
Date Analyzed:	05/12/2010 1525		Fina	al Weight/Volume:	0.5 mL
Date Prepared:	05/08/2010 1209		Inje	ction Volume:	1 uL
Analyte		Result (ug/L)	Qualifier	MDL	RL
1,2-Dichlorobenze	ne	<10		0.53	10
1,4-Dichlorobenze	ne	1.4	J	0.54	10
2,4,6-Trichlorophe	nol	<10		0.85	10
4-Nitrophenol		<25		1.9	25
o,o',o"-Triethylpho	sphorothioate	<10		1.0	10
2,4,5-Trichlorophe	nol	<10		1.2	10
Pentachloropheno	I	<10		2.0	10
Phenol		<10		0.83	10
2,4-Dichloropheno	ſ	<10		1.1	10
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl		74	50 - 113		
2-Fluorophenol		62		36 - 110	
Nitrobenzene-d5		73		45 - 112	
Phenol-d5		61		38 - 116	
Terphenyl-d14		78		10 - 121	
2,4,6-Tribromophe	nol	80		40 - 139	

1 uL

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1

Lab Sample ID: 680-57431-3 Date Sampled: 05/06/2010 1605

Client Matrix: Water Date Received: 05/07/2010 1156

8270C Semivolatile Organic Compounds (GC/MS SIM)

Method: 8270C Analysis Batch: 680-168791 Instrument ID: MSF f0081a.d Preparation: 3520C Prep Batch: 680-167912 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 500 mL 05/17/2010 1722 Date Analyzed: Final Weight/Volume: 0.5 mL 05/08/2010 1209 Date Prepared:

Injection Volume: Analyte Result (ug/L) Qualifier RL RL

Pentachlorophenol <1.0 1.0 1.0

Client Sample ID:

SEEP-1 FD

Lab Sample ID:

680-57431-4FD

Client Matrix:

Water

Date Sampled: 05/06/2010 0000 Date Received: 05/07/2010 1156

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation: Dilution:

Date Analyzed:

Date Prepared:

8270C 3520C 1.0

0 . 0 !

Analysis Batch: 680-168320 Prep Batch: 680-167912 Instrument ID: Lab File ID: MSG g1208.d 1050 mL

05/12/2010 1325 05/08/2010 1209 Initial Weight/Volume: Final Weight/Volume: Injection Volume:

1 mL 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2-Dichlorobenzene	<9.5		0.50	9.5
1,4-Dichlorobenzene	1.6	J	0.51	9.5
2,4,6-Trichlorophenol	<9.5		0.81	9.5
4-Nitrophenol	<24		1.8	24
o,o',o"-Triethylphosphorothioate	<9.5		0.95	9.5
2,4,5-Trichlorophenol	<9.5		1.1	9.5
Pentachlorophenol	<9.5		1.9	9.5
Phenol	<9.5		0.79	9.5
2,4-Dichlorophenol	<9.5		1.0	9.5

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl	84		50 - 113	
2-Fluorophenol	68		36 - 110	
Nitrobenzene-d5	77		45 - 112	
Phenol-d5	72		38 - 116	
Terphenyl-d14	51		10 - 121	
2,4,6-Tribromophenol	87		40 - 139	

MSF

f0082.d

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1 FD

Lab Sample ID: 680-57431-4FD Date Sampled: 05/06/2010 0000

Client Matrix: Water Date Received: 05/07/2010 1156

8270C Semivolatile Organic Compounds (GC/MS SIM)

Method: 8270C Analysis Batch: 680-168791 Instrument ID: Preparation: 3520C Prep Batch: 680-167912 Lab File ID: Dilution: 1.0

Initial Weight/Volume: 1050 mL 05/17/2010 1647 Date Analyzed: Final Weight/Volume: 1 mL 05/08/2010 1209 Date Prepared: Injection Volume: 1 uL

Analyte Result (ug/L) Qualifier RL RL

Pentachlorophenol <0.95 0.95 0.95

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (G	C/MS)
---	-------

Method: 8270C Analysis Batch: 680-168320 Instrument ID: MSG Preparation: 3520C Prep Batch: 680-167912 Lab File ID: g1209.d Dilution: 1.0 Initial Weight/Volume: 1060 mL 05/12/2010 1349 Date Analyzed: Final Weight/Volume: 1 mL 05/08/2010 1209 Date Prepared: Injection Volume: 1 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2-Dichlorobenzene	<9.4		0.50	9.4
1,4-Dichlorobenzene	<9.4		0.51	9.4
2,4,6-Trichlorophenol	<9.4		0.80	9.4
4-Nitrophenol	<24		1.8	24
o,o',o"-Triethylphosphorothioate	<9.4		0.94	9.4
2,4,5-Trichlorophenol	<9.4		1.1	9.4
Pentachlorophenol	<9.4		1.9	9.4
Phenol	<9.4		0.78	9.4
2,4-Dichlorophenol	<9.4		1.0	9.4

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl	69		50 - 113	
2-Fluorophenol	58		36 - 110	
Nitrobenzene-d5	62		45 - 112	
Phenol-d5	58		38 - 116	
Terphenyl-d14	86		10 - 121	
2,4,6-Tribromophenol	66		40 - 139	

MSF

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

8270C Semivolatile Organic Compounds (GC/MS SIM)

Method: 8270C Analysis Batch: 680-168791 Instrument ID: Preparation: 3520C Prep Batch: 680-167912 Lab File ID: Dilution: 1.0

f0083.d Initial Weight/Volume: 1060 mL 05/17/2010 1704 Date Analyzed: Final Weight/Volume: 1 mL 05/08/2010 1209 Date Prepared: Injection Volume: 1 uL

Analyte Result (ug/L) Qualifier RL RL

Pentachlorophenol <0.94 0.94 0.94

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-0.1 um

Lab Sample ID:

680-57431-1

Client Matrix:

Water

Date Sampled: 05/06/2010 1600

Date Received: 05/07/2010 1156

g	8081A_8082	Organochlorine P	esticides	& PCBs	(GC)
---	------------	------------------	-----------	--------	------

Method: Preparation: Dilution: Date Analyzed:

8081A_8082 3520C

1.0

05/10/2010 1918

Analysis Batch: 680-168211

Prep Batch: 680-167911

Instrument ID:

SGZ Initial Weight/Volume: 500 mL Final Weight/Volume: 2.5 mL Injection Volume:

Date Analyzed.	010 1010		nijec	don volume.	Z UL
Date Prepared: 05/08/2	010 1209		Resu	ılt Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016		<0.25		0.036	0.25
PCB-1221		<0.25		0.14	0.25
PCB-1232		<0.25		0.055	0.25
PCB-1242		<0.25		0.090	0.25
PCB-1248		<0.25		0.18	0.25
PCB-1254		<0.25		0.13	0.25
PCB-1260		<0.25		0.10	0.25
PCB-1268		<0.50		0.13	0.50
Surrogate		%Rec	Qualifier	Accep	tance Limits
Tetrachloro-m-xylene		53		35 - 12	20
DCB Decachlorobiphenyl		38		14 - 11	5

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-0.1 um

Lab Sample ID: 680-57431-1 Date Sampled: 05/06/2010 1600
Client Matrix: Water Date Received: 05/07/2010 1156

Client Matrix: Water Date Received: 05/07/2010 1156

8081A_8082 Organochlorine Pesticides & PCBs (GC)

 Method:
 8081A_8082
 Analysis Batch: 680-168211
 Instrument ID:
 SGZ

 Preparation:
 3520C
 Prep Batch: 680-167911
 Initial Weight/Volume:
 500 mL

 Dilution:
 1.0
 Final Weight/Volume:
 2.5 mL

Date Analyzed: 05/10/2010 1918 Injection Volume: 2 uL

Date Prepared: 05/08/2010 1209 Result Type: SECONDARY

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene4735 - 120DCB Decachlorobiphenyl3414 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1

Lab Sample ID:

680-57431-3

Client Matrix:

Water

Date Sampled: 05/06/2010 1605

Date Received: 05/07/2010 1156

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: Preparation: Dilution: Date Analyzed:

Date Prepared:

PCB-1268

8081A_8082 3520C

1.0

05/10/2010 1953

05/08/2010 1209

Analysis Batch: 680-168211 Prep Batch: 680-167911

Instrument ID: Initial Weight/Volume:

SGZ 1050 mL Final Weight/Volume:

Injection Volume: Result Type:

0.12

5 mL 2 uL **PRIMARY**

0.48

Result (ug/L) Analyte Qualifier MDL RL PCB-1016 <0.24 0.034 0.24 PCB-1221 < 0.24 0.13 0.24 PCB-1232 < 0.24 0.24 0.052 PCB-1242 < 0.24 0.086 0.24 PCB-1248 < 0.24 0.17 0.24 PCB-1254 0.12 Jp 0.12 0.24 PCB-1260 < 0.24 0.095 0.24

< 0.48

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	62		35 - 120
DCB Decachlorobiphenyl	40		14 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1

Lab Sample ID: 680-57431-3 Date Sampled: 05/06/2010 1605
Client Matrix: Water Date Received: 05/07/2010 1156

Client Matrix: Water Date Received: 05/07/2010 1156

8081A_8082 Organochlorine Pesticides & PCBs (GC)

 Method:
 8081A_8082
 Analysis Batch: 680-168211
 Instrument ID:
 SGZ

 Preparation:
 3520C
 Prep Batch: 680-167911
 Initial Weight/Volume:
 1050 mL

 Dilution:
 1.0
 Final Weight/Volume:
 5 mL

 Date Analyzed:
 05/10/2010 1953
 Injection Volume:
 2 uL

Date Prepared: 05/08/2010 1209 Result Type: SECONDARY

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene5635 - 120DCB Decachlorobiphenyl3914 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1 FD

Lab Sample ID:

680-57431-4FD

Client Matrix:

Water

Date Sampled: 05/06/2010 0000 Date Received: 05/07/2010 1156

00044 0	1002 Armona	chlorine Pes	dialda 0	DCD- //	100
AUATA A	waz Organo	chiorine Pe	SHERING &	PURSIL	71.1

Method: Preparation: 8081A_8082

3520C

Dilution: Date Analyzed:

Date Prepared:

1.0

05/10/2010 2027 05/08/2010 1209 Analysis Batch: 680-168211

Prep Batch: 680-167911

Instrument ID:

Result Type:

SGZ Initial Weight/Volume: 500 mL Final Weight/Volume: Injection Volume:

2.5 mL 2 uL **PRIMARY**

Result (ug/L) Analyte Qualifier MDL RL PCB-1016 < 0.25 0.036 0.25 PCB-1221 < 0.25 0.14 0.25 PCB-1232 < 0.25 0.25 0.055 < 0.25 PCB-1242 0.090 0.25 PCB-1248 < 0.25 0.18 0.25 PCB-1254 < 0.25 0.13 0.25 PCB-1260 < 0.25 0.10 0.25 PCB-1268 < 0.50 0.13 0.50

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 67 35 - 120 DCB Decachlorobiphenyl 44 p 14 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1 FD

Lab Sample ID:

680-57431-4FD

Client Matrix:

Water

Date Sampled: 05/06/2010 0000

Date Received: 05/07/2010 1156

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Method: Preparation: 8081A_8082

1.0

Dilution:

Date Analyzed: Date Prepared:

3520C

05/10/2010 2027 05/08/2010 1209

Analysis Batch: 680-168211

Prep Batch: 680-167911

Instrument ID:

Initial Weight/Volume:

SGZ 500 mL 2.5 mL

Final Weight/Volume: Injection Volume:

2 uL

Result Type:

SECONDARY

Surrogate %Rec Qualifier Acceptance Limits Tetrachloro-m-xylene 47 35 - 120 DCB Decachlorobiphenyl 66 14 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

FIELD BLANK-1

Lab Sample ID:

680-57431-5FB

Client Matrix:

Water

Date Sampled: 05/06/2010 1620 Date Received: 05/07/2010 1156

		8081A_8082 Organochlorine Pesticio	des & PCBs (GC	:)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A_8082 3520C 1.0 05/10/2010 2102 05/08/2010 1209	Analysis Batch: 680-168211 Prep Batch: 680-167911	Initia Fina Injed	ument ID: al Weight/Volume: I Weight/Volume: ction Volume: ult Type:	SGZ 1060 mL 5 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	RL
PCB-1016		<0.24		0.033	0.24
PCB-1221		<0.24		0.13	0.24
PCB-1232		<0.24		0.052	0.24
PCB-1242		<0.24		0.085	0.24
PCB-1248		<0.24		0.17	0.24
PCB-1254		<0.24		0.12	0.24
PCB-1260		<0.24		0.094	0.24
PCB-1268		<0.47		0.12	0.47
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xyle	ene	72		35 - 120	
DCB Decachlorobi	phenyl	69		14 - 115	

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

8081A_8082 Organochlorine Pesticides & PCBs (GC)

 Method:
 8081A_8082
 Analysis Batch: 680-168211
 Instrument ID:
 SGZ

 Preparation:
 3520C
 Prep Batch: 680-167911
 Initial Weight/Volume:
 1060 mL

 Dilution:
 1.0
 Final Weight/Volume:
 5 ml

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 05/10/2010 2102 Injection Volume: 2 uL

Date Prepared: 05/08/2010 1209 Result Type: SECONDARY

Surrogate%RecQualifierAcceptance LimitsTetrachloro-m-xylene7035 - 120DCB Decachlorobiphenyl6714 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1

Lab Sample ID:

680-57431-3

Client Matrix:

Water

Date Sampled: 05/06/2010 1605

Date Received: 05/07/2010 1156

8141A Organophosphorou	us Pesticides (GC)
------------------------	--------------------

Method: Preparation:

Dilution:

8141A 3520C

1.0

Date Analyzed: Date Prepared:

05/10/2010 2045 05/08/2010 1209 Analysis Batch: 680-168078

Prep Batch: 680-167911

Instrument ID:

SGO Initial Weight/Volume: 1050 mL Final Weight/Volume: 5 mL

Injection Volume: 2 uL Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier MDL RL Methyl parathion <0.24 0.12 0.24 **Ethyl Parathion** <0.48 0.24 0.48 Tetraethyldithiopyrophosphate < 0.24 0.12 0.24

Surrogate %Rec Qualifier Acceptance Limits

Triphenylphosphate 81 26 - 134

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID:

SEEP-1 FD

Lab Sample ID:

680-57431-4FD

Client Matrix:

Water

Date Sampled: 05/06/2010 0000

Date Received: 05/07/2010 1156

8141A Organophosphorou	us Pesticides (GC)
------------------------	--------------------

Method: Preparation:

Dilution:

8141A 3520C

1.0

Date Analyzed: Date Prepared:

05/10/2010 2110 05/08/2010 1209 Analysis Batch: 680-168078

Prep Batch: 680-167911

Instrument ID:

SGO Initial Weight/Volume: Final Weight/Volume: Injection Volume:

500 mL 2.5 mL 2 uL

Result Type:

PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Methyl parathion <0.25 0.12 0.25 **Ethyl Parathion** < 0.50 0.25 0.50 Tetraethyldithiopyrophosphate < 0.25 0.12 0.25

Surrogate Triphenylphosphate %Rec 108

Qualifier

Acceptance Limits

26 - 134

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

		6 14 IA Organophosphorous Pes	sucides (GC)			
Method:	8141A	Analysis Batch: 680-168078	Ins	trument ID:	SGO	
Preparation:	3520C	Prep Batch: 680-167911	Init	ial Weight/Volume:	1060 mL	
Dilution:	1.0		Fin	al Weight/Volume:	5 mL	
Date Analyzed:	05/10/2010 2135		Inje	ection Volume:	2 uL	
Date Prepared:	05/08/2010 1209		Result Type:		PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
Methyl parathion		<0.24		0.12	0.24	

 Methyl parathion
 <0.24</td>
 0.12
 0.24

 Ethyl Parathion
 <0.47</td>
 *
 0.24
 0.47

 Tetraethyldithiopyrophosphate
 <0.24</td>
 0.12
 0.24

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 Triphenylphosphate
 84
 26 - 134

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-0.1 um

Lab Sample ID: 680-57431-1 Date Sampled: 05/06/2010 1600

Client Matrix: Water Date Received: 05/07/2010 1156

6010B	Motolo	(ICD)	Dicco	hood
OUTUB	VIELAIS	ICE	-DISSU	iveu

 Method:
 6010B
 Analysis Batch: 680-168433
 Instrument ID:
 ICPD

 Preparation:
 3005A
 Prep Batch: 680-168245
 Lab File ID:
 168245.chr

 Dilution:
 1.0
 Initial Weight/Volume:
 50 mL

 Date Analyzed:
 05/13/2010 0156
 Final Weight/Volume:
 50 mL

Date Prepared: 05/12/2010 0956

Analyte	Result (mg/L)	Qualifier	MDL	RL
Arsenic	<0.020		0.010	0.020
Barium	0.12		0.0020	0.010
Beryllium	< 0.0040		0.00010	0.0040
Cadmium	< 0.0050		0.0020	0.0050
Chromium	<0.010		0.0020	0.010
Cobalt	<0.010		0.0010	0.010
Lead	<0.010		0.0034	0.010
Manganese	0.17		0.0030	0.010
Nickel	<0.040		0.0040	0.040
Vanadium	<0.010		0.0030	0.010

7470A Mercury (CVAA)-Dissolved

 Method:
 7470A
 Analysis Batch: 680-168214
 Instrument ID:
 LEEMAN1

 Preparation:
 7470A
 Prep Batch: 680-168114
 Lab File ID:
 051110.chr

 Dilution:
 1.0
 Initial Weight/Volume:
 50 mL

Date Analyzed: 05/12/2010 1249 Final Weight/Volume: 50 mL

Date Prepared: 05/11/2010 1121

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Mercury
 <0.00020</td>
 0.000091
 0.00020

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1

Lab Sample ID: 680-57431-3 Date Sampled: 05/06/2010 1605

Client Matrix: Water Date Received: 05/07/2010 1156

6010B Metals	(ICP)-Total	l Recoverable
--------------	-------------	---------------

Method: 6010B Analysis Batch: 680-168433 Instrument ID: ICPD Preparation: 3005A Prep Batch: 680-168245 Lab File ID: 168245.chr

Dilution: 1.0 Initial Weight/Volume: 50 mL 05/13/2010 0212 Date Analyzed: Final Weight/Volume: 50 mL

05/12/2010 0956 Date Prepared:

Analyte Result (mg/L) Qualifier MDL RL Arsenic < 0.020 0.010 0.020 Barium 0.13 0.0020 0.010 Beryllium < 0.0040 0.00010 0.0040 Cadmium <0.0050 0.0020 0.0050 Chromium <0.010 0.0020 0.010 Cobalt < 0.010 0.0010 0.010 Lead < 0.010 0.0034 0.010 0.010 Manganese 0.19 0.0030 Nickel < 0.040 0.0040 0.040 Vanadium <0.010 0.0030 0.010

7470A Mercury (CVAA)

Method: 7470A Analysis Batch: 680-168214 Instrument ID: LEEMAN1 Preparation: 7470A Prep Batch: 680-168114 Lab File ID: 051110.chr Dilution: 1.0 Initial Weight/Volume: 50 mL

05/12/2010 1252 Date Analyzed: Final Weight/Volume: 50 mL

Date Prepared: 05/11/2010 1121

Analyte Result (mg/L) Qualifier MDL RL Mercury <0.00020 0.000091 0.00020

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: SEEP-1 FD

Lab Sample ID: 680-57431-4FD Date Sampled: 05/06/2010 0000

Client Matrix: Water Date Received: 05/07/2010 1156

COAOD	B#-4-1-	(ICD) T	-4-1	D	-1-1-
DUTUB	Metals	(ICP)-I	orai	Recovera	anie

Method: 6010B Analysis Batch: 680-168433 Instrument ID: ICPD Preparation: 3005A Prep Batch: 680-168245 Lab File ID: 168245.chr

Dilution: 1.0 Initial Weight/Volume: 50 mL 05/13/2010 0217 Date Analyzed: Final Weight/Volume: 50 mL

05/12/2010 0956 Date Prepared:

Analyte Result (mg/L) Qualifier MDL RL Arsenic < 0.020 0.010 0.020 Barium 0.12 0.0020 0.010 Beryllium < 0.0040 0.00010 0.0040 Cadmium <0.0050 0.0020 0.0050 Chromium <0.010 0.0020 0.010 Cobalt <0.010 0.0010 0.010 Lead < 0.010 0.0034 0.010 0.010 Manganese 0.19 0.0030 Nickel < 0.040 0.0040 0.040 Vanadium <0.010 0.0030 0.010

7470A Mercury (CVAA)

Method: 7470A Analysis Batch: 680-168214 Instrument ID: LEEMAN1 Preparation: 7470A Prep Batch: 680-168114 Lab File ID: 051110.chr Dilution: 1.0 Initial Weight/Volume: 50 mL

05/12/2010 1255 Date Analyzed: Final Weight/Volume: 50 mL

Date Prepared: 05/11/2010 1121

Analyte Result (mg/L) Qualifier MDL RL Mercury <0.00020 0.000091 0.00020

Client: Golder Associates Inc. Job Number: 680-57431-1

Client Sample ID: FIELD BLANK-1

Lab Sample ID: 680-57431-5FB Date Sampled: 05/06/2010 1620

Client Matrix: Water Date Received: 05/07/2010 1156

COAOD	B#-4-1-	(ICD) T	-4-1	D	-1-1-
DUTUB	Metals	(ICP)-I	orai	Recovera	anie

 Method:
 6010B
 Analysis Batch: 680-168433
 Instrument ID:
 ICPD

 Preparation:
 3005A
 Prep Batch: 680-168245
 Lab File ID:
 168245.chr

 Dilution:
 1.0
 Initial Weight/Volume:
 50 mL

 Date Analyzed:
 05/13/2010 0222
 Final Weight/Volume:
 50 mL

Date Prepared: 05/12/2010 0956

Analyte Result (mg/L) Qualifier MDL RL Arsenic < 0.020 0.010 0.020 Barium < 0.010 0.0020 0.010 Beryllium < 0.0040 0.00010 0.0040 Cadmium <0.0050 0.0020 0.0050 Chromium <0.010 0.0020 0.010 Cobalt < 0.010 0.0010 0.010 Lead < 0.010 0.0034 0.010 <0.010 0.010 Manganese 0.0030 Nickel < 0.040 0.0040 0.040 Vanadium <0.010 0.0030 0.010

7470A Mercury (CVAA)

 Method:
 7470A
 Analysis Batch: 680-168214
 Instrument ID:
 LEEMAN1

 Preparation:
 7470A
 Prep Batch: 680-168114
 Lab File ID:
 051110.chr

 Dilution:
 1.0
 Initial Weight/Volume:
 50 mL

Date Analyzed: 05/12/2010 1257 Final Weight/Volume: 50 mL

Date Prepared: 05/11/2010 1121

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Mercury
 <0.00020</td>
 0.00091
 0.00020

DATA REPORTING QUALIFIERS

Client: Golder Associates Inc. Job Number: 680-57431-1

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	F	MS or MSD exceeds the control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	F	RPD of the MS and MSD exceeds the control limits
	X	Surrogate is outside control limits
GC Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	*	RPD of the LCS and LCSD exceeds the control limits
	р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

QUALITY CONTROL RESULTS

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:680-1681	85				
LCS 680-168185/6	Lab Control Sample	T	Water	8260B	
LCSD 680-168185/7	Lab Control Sample Duplicate	T	Water	8260B	
MB 680-168185/9	Method Blank	T	Water	8260B	
680-57431-2TB	Trip Blank-1	T	Water	8260B	
680-57431-3	SEEP-1	Т	Water	8260B	
680-57431-4FD	SEEP-1 FD	T	Water	8260B	
680-57431-5FB	FIELD BLANK-1	T	Water	8260B	

Report Basis

T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 680-167910					
_CS 680-167910/8-A	Lab Control Sample	T	Water	680	
_CSD 680-167910/9-A	Lab Control Sample Duplicate	T	Water	680	
MB 680-167910/7-A	Method Blank	T	Water	680	
680-57431-1	SEEP-0.1 um	Ť	Water	680	
680-57431-3	SEEP-1	Т	Water	680	
680-57431-4FD	SEEP-1 FD	T	Water	680	
680-57431-5FB	FIELD BLANK-1	T	Water	680	
Prep Batch: 680-167912					
_CS 680-167912/5-A	Lab Control Sample	T	Water	3520C	
MB 680-167912/4-A	Method Blank	T	Water	3520C	
680-57431-3	SEEP-1	T	Water	3520C	
680-57431-3MS	Matrix Spike	T	Water	3520C	
680-57431-3MSD	Matrix Spike Duplicate	T	Water	3520C	
680-57431-4FD	SEEP-1 FD	* T *	Water	3520C	
680-57431-5FB	FIELD BLANK-1	T	Water	3520C	
Analysis Batch:680-168269					
LCS 680-167910/8-A	Lab Control Sample	T	Water	680	680-167910
LCSD 680-167910/9-A	Lab Control Sample Duplicate	T	Water	680	680-167910
MB 680-167910/7-A	Method Blank	* T .*	Water	680	680-167910
680-57431-1	SEEP-0.1 um	T	Water	680	680-167910
680-57431-3	SEEP-1	T	Water	680	680-167910
680-57431-4FD	SEEP-1 FD	T	Water	680	680-167910
680-57431-5FB	FIELD BLANK-1	T	Water	680	680-167910
Analysis Batch:680-168320					
LCS 680-167912/5-A	Lab Control Sample	T	Water	8270C	680-167912
MB 680-167912/4-A	Method Blank	T	Water	8270C	680-167912
680-57431-3	SEEP-1	T	Water	8270C	680-167912
680-57431-3MS	Matrix Spike	T	Water	8270C	680-167912
680-57431-3MSD	Matrix Spike Duplicate	T	Water	8270C	680-167912
680-57431-4FD	SEEP-1 FD	T	Water	8270C	680-167912
680-57431-5FB	FIELD BLANK-1	T	Water	8270C	680-167912
Analysis Batch:680-168791					
MB 680-167912/4-A	Method Blank	* T *	Water	8270C	680-167912
680-57431-3	SEEP-1	T	Water	8270C	680-167912
680-57431-4FD	SEEP-1 FD	T	Water	8270C	680-167912
680-57431-5FB	FIELD BLANK-1	T	Water	8270C	680-167912

Report Basis

T = Total

TestAmerica Savannah

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 680-167911					
LCS 680-167911/11-A	Lab Control Sample	T	Water	3520C	
LCS 680-167911/6-A	Lab Control Sample	T	Water	3520C	
LCS 680-167911/9-A	Lab Control Sample	T	Water	3520C	
LCSD 680-167911/10-A	Lab Control Sample Duplicate	T	Water	3520C	
LCSD 680-167911/12-A	Lab Control Sample Duplicate	T	Water	3520C	
MB 680-167911/5-A	Method Blank	T	Water	3520C	
680-57431-1	SEEP-0.1 um	T	Water	3520C	
680-57431-3	SEEP-1	Т	Water	3520C	
680-57431-4FD	SEEP-1 FD	T	Water	3520C	
680-57431-4MS	Matrix Spike	T	Water	3520C	
680-57431-4MSD	Matrix Spike Duplicate	Т	Water	3520C	
680-57431-5FB	FIELD BLANK-1	T	Water	3520C	
Analysis Batch:680-16807	78				
LCS 680-167911/11-A	Lab Control Sample	T	Water	8141A	680-167911
LCS 680-167911/9-A	Lab Control Sample	T	Water	8141A	680-167911
LCSD 680-167911/10-A	Lab Control Sample Duplicate	Т	Water	8141A	680-167911
LCSD 680-167911/12-A	Lab Control Sample Duplicate	Т	Water	8141A	680-167911
MB 680-167911/5-A	Method Blank	T	Water	8141A	680-167911
680-57431-3	SEEP-1	Т	Water	8141A	680-167911
680-57431-4FD	SEEP-1 FD	Т	Water	8141A	680-167911
680-57431-5FB	FIELD BLANK-1	T	Water	8141A	680-167911
Analysis Batch:680-16821	1				
LCS 680-167911/6-A	Lab Control Sample	T	Water	8081A_8082	680-167911
MB 680-167911/5-A	Method Blank	Т	Water	8081A_8082	680-167911
680-57431-1	SEEP-0.1 um	T	Water	8081A_8082	680-167911
680-57431-3	SEEP-1	Т	Water	8081A_8082	680-167911
680-57431-4FD	SEEP-1 FD	T	Water	8081A_8082	680-167911
680-57431-4MS	Matrix Spike	T	Water	8081A_8082	680-167911
680-57431-4MSD	Matrix Spike Duplicate	Т	Water	8081A 8082	680-167911
680-57431-5FB	FIELD BLANK-1	Т	Water	8081A 8082	680-167911

Report Basis

T = Total

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 680-168114					
LCS 680-168114/24-A	Lab Control Sample	T	Water	7470A	
MB 680-168114/23-A	Method Blank	T	Water	7470A	
680-57431-1	SEEP-0.1 um	D	Water	7470A	
680-57431-3	SEEP-1	Т	Water	7470A	
680-57431-4FD	SEEP-1 FD	T	Water	7470A	
680-57431-5FB	FIELD BLANK-1	Т	Water	7470A	
Analysis Batch:680-1682	14				
LCS 680-168114/24-A	Lab Control Sample	T	Water	7470A	680-168114
MB 680-168114/23-A	Method Blank	T	Water	7470A	680-168114
680-57431-1	SEEP-0.1 um	D	Water	7470A	680-168114
680-57431-3	SEEP-1	T	Water	7470A	680-168114
680-57431-4FD	SEEP-1 FD	Ť	Water	7470A	680-168114
680-57431-5FB	FIELD BLANK-1	Ť	Water	7470A	680-168114
Prep Batch: 680-168245					
LCS 680-168245/19-A	Lab Control Sample	R	Water	3005A	
MB 680-168245/18-A	Method Blank	R	Water	3005A	
680-57431-1	SEEP-0.1 um	D	Water	3005A	
680-57431-3	SEEP-1	R	Water	3005A	
680-57431-4FD	SEEP-1 FD	R	Water	3005A	
680-57431-5FB	FIELD BLANK-1	R	Water	3005A	
Analysis Batch:680-1684	33				
LCS 680-168245/19-A	Lab Control Sample	R	Water	6010B	680-168245
MB 680-168245/18-A	Method Blank	R	Water	6010B	680-168245
680-57431-1	SEEP-0.1 um	D	Water	6010B	680-168245
680-57431-3	SEEP-1	R	Water	6010B	680-168245
680-57431-4FD	SEEP-1 FD	R	Water	6010B	680-168245
680-57431-4FB	FIELD BLANK-1	R	Water	6010B	680-168245
JUU-J1431-JFD	LIELD DLAINK-1	К	vvalei	00100	000-100243

Report Basis

D = Dissolved

R = Total Recoverable

T = Total

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
680-57431-2	Trip Blank-1	102	88	100
680-57431-3	SEEP-1	102	88	101
680-57431-4	SEEP-1 FD	102	87	103
680-57431-5	FIELD BLANK-1	101	87	102
MB 680-168185/9		102	86	103
LCS 680-168185/6		104	96	100
LCSD 680-168185/7		103	94	103

Surrogate	Acceptance Limits
TOL = Toluene-d8 (Surr)	75-120
BFB = 4-Bromofluorobenzene	75-120
DBFM = Dibromofluoromethane	75-121

Surrogate Recovery Report

680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Client Matrix: Water

		13DCB
Lab Sample ID	Client Sample ID	%Rec
680-57431-1	SEEP-0.1 um	38
680-57431-3	SEEP-1	46
680-57431-4	SEEP-1 FD	41
680-57431-5	FIELD BLANK-1	45
MB 680-167910/7-A		50
LCS 680-167910/8-A	(63
LCSD 680-167910/9-A		57

Surrogate Acceptance Limits 25-113

13DCB = Decachlorobiphenyl-13C12

Surrogate Recovery Report

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Client Matrix: Water

		FBP	2FP	NBZ	PHL	TPH	TBP
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec	%Rec	%Rec
680-57431-3	SEEP-1	74	62	73	61	78	80
680-57431-4	SEEP-1 FD	84	68	77	72	51	87
680-57431-5	FIELD BLANK-1	69	58	62	58	86	66
MB 680-167912/4-A		71	34X	68	57	88	59
LCS 680-167912/5-A		79	51	60	56	81	84
680-57431-3 MS	SEEP-1 MS	45X	27X	37X	37X	65	59
680-57431-3 MSD	SEEP-1 MSD	69	48	60	51	50	73

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	50-113
2FP = 2-Fluorophenol	36-110
NBZ = Nitrobenzene-d5	45-112
PHL = Phenol-d5	38-116
TPH = Terphenyl-d14	10-121
TBP = 2,4,6-Tribromophenol	40-139

Surrogate Recovery Report

8081A_8082 Organochlorine Pesticides & PCBs (GC)

Client Matrix: Water

		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
680-57431-1	SEEP-0.1 um	53	47	34	38
680-57431-3	SEEP-1	62	56	40	39
680-57431-4	SEEP-1 FD	47	67	44p	66
680-57431-5	FIELD BLANK-1	72	70	67	69
MB 680-167911/5-A		66	71	76	84
LCS 680-167911/6-A		82	87	84	92
680-57431-4 MS	SEEP-1 FD MS	61	56	54	52
680-57431-4 MSD	SEEP-1 FD MSD	77	53	64	47

Surrogate	Acceptance Limits
TCX = Tetrachloro-m-xylene	35-120
DCB = DCB Decachlorobiphenyl	14-115

Surrogate Recovery Report

8141A Organophosphorous Pesticides (GC)

Client Matrix: Water

		TPP2
Lab Sample ID	Client Sample ID	%Rec
680-57431-3	SEEP-1	81
680-57431-4	SEEP-1 FD	108
680-57431-5	FIELD BLANK-1	84
MB 680-167911/5-A		86
LCS 680-167911/9-A		91
LCS 680-167911/11-A		95
LCSD 680-167911/10-A		92
LCSD 680-167911/12-A		88

Surrogate Acceptance Limits

TPP = Triphenylphosphate 26-134

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-168185

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 680-168185/9

Client Matrix: Water Dilution: 1.0

05/11/2010 1213 Date Analyzed: Date Prepared: 05/11/2010 1213 Analysis Batch: 680-168185

Prep Batch: N/A Units: ug/L

Instrument ID: MSO

Lab File ID: oq297.d Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result	Qual	MDL	RL
Methylene Chloride	<5.0		1.0	5.0
1,1,2,2-Tetrachloroethane	<1.0		0.18	1.0
Chlorobenzene	<1.0		0.25	1.0
Isopropylbenzene	<1.0		0.10	1.0
Surrogate	% Rec		Acceptance Limits	
Toluene-d8 (Surr)	102		75 - 120	
4-Bromofluorobenzene	86		75 - 120	
Dibromofluoromethane	103		75 - 121	

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 680-168185 Preparation: 5030B

LCS Lab Sample ID: LCS 680-168185/6 Client Matrix:

Water 1.0

Dilution: 05/11/2010 1012 Date Analyzed: 05/11/2010 1012 Date Prepared:

Analysis Batch: 680-168185

Prep Batch: N/A

Units: ug/L

Instrument ID:

MSO Lab File ID: oq289.d

Initial Weight/Volume: Final Weight/Volume: 5 mL 5 mL

LCSD Lab Sample ID: LCSD 680-168185/7

Client Matrix: Dilution:

Water

Date Analyzed:

1.0

05/11/2010 1041 05/11/2010 1041 Date Prepared:

Analysis Batch: 680-168185

Prep Batch: N/A

Units: ug/L

Instrument ID: Lab File ID:

MSO oq291.d

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

% Rec.

	70 INCC.					
LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
105	110	70 - 125	4	30		
97	93	69 - 129	5	30		
99	98	85 - 116	1	30		
103	102	82 - 121	1	30		
Ĺ	.CS % Rec	LCSD %	Rec	Accep	tance Limits	
1	04	103		7	5 - 120	
g	6	94		7	5 - 120	
1	00	103		7	5 - 121	
	LCS 105 97 99 103 L	105 110 97 93 99 98	LCS LCSD Limit 105 110 70 - 125 97 93 69 - 129 99 98 85 - 116 103 102 82 - 121 LCS % Rec LCSD % 104 103 96 94	LCS LCSD Limit RPD 105 110 70 - 125 4 97 93 69 - 129 5 99 98 85 - 116 1 103 102 82 - 121 1 LCS % Rec LCSD % Rec 104 103 96 94	LCS LCSD Limit RPD RPD Limit 105 110 70 - 125 4 30 97 93 69 - 129 5 30 99 98 85 - 116 1 30 103 102 82 - 121 1 30 LCS % Rec LCSD % Rec Accep 104 103 7 96 94 7	LCS LCSD Limit RPD RPD Limit LCS Qual 105 110 70 - 125 4 30 97 93 69 - 129 5 30 99 98 85 - 116 1 30 103 102 82 - 121 1 30 LCS % Rec LCSD % Rec Acceptance Limits 104 103 75 - 120 96 94 75 - 120

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-167910 Method: 680
Preparation: 680

Lab Sample ID: MB 680-167910/7-A Analysis Batch: 680-168269 Instrument ID: MSF Client Matrix: Water Prep Batch: 680-167910 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 05/10/2010 2001 Final Weight/Volume: 1 mL

Date Prepared: 05/08/2010 1209 Injection Volume:

Analyte	Result	Qual	MDL	RL
Monochlorobiphenyl	<0.10		0.0056	0.10
Dichlorobiphenyl	<0.10		0.0054	0.10
Trichlorobiphenyl	<0.10		0.0065	0.10
Tetrachlorobiphenyl	<0.20		0.013	0.20
Pentachlorobiphenyl	<0.20		0.014	0.20
Hexachlorobiphenyl	<0.20		0.015	0.20
Heptachlorobiphenyl	<0.30		0.030	0.30
Octachlorobiphenyl	<0.30		0.038	0.30
Nonachlorobiphenyl	<0.50		0.049	0.50
DCB Decachlorobiphenyl	<0.50		0.070	0.50
Surrogate	% Rec		Acceptance Limits	
Decachlorobiphenyl-13C12	50		25 - 113	

Client: Golder Associates Inc. Job Number: 680-57431-1

Lab Control Sample/ Method: 680
Lab Control Sample Duplicate Recovery Report - Batch: 680-167910 Preparation: 680

LCS Lab Sample ID: LCS 680-167910/8-A Analysis Batch: 680-168269 Instrument ID: MSF

Client Matrix: Water Prep Batch: 680-167910 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume:

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL Date Analyzed: 05/10/2010 2033 Final Weight/Volume: 1 mL

Date Prepared: 05/08/2010 1209 Injection Volume:

LCSD Lab Sample ID: LCSD 680-167910/9-A Analysis Batch: 680-168269 Instrument ID: MSF

Client Matrix: Water Prep Batch: 680-167910 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 05/10/2010 2105 Final Weight/Volume: 1 mL

Date Prepared: 05/08/2010 1209 Injection Volume:

% Rec. LCS Analyte LCSD Limit **RPD RPD Limit** LCS Qual LCSD Qual Monochlorobiphenyl 27 10 - 125 28 5 40 Dichlorobiphenyl 35 33 10 - 110 7 40 Trichlorobiphenyl 38 35 17 - 110 8 40 39 18 - 110 Tetrachlorobiphenyl 41 7 40 Pentachlorobiphenyl 47 41 34 - 110 12 40 Hexachlorobiphenyl 48 43 40 31 - 110 10 51 46 Heptachlorobiphenyl 33 - 110 10 40 53 49 40 Octachlorobiphenyl 33 - 110 8 DCB Decachlorobiphenyl 53 49 26 - 115 40 8 LCS % Rec Surrogate LCSD % Rec Acceptance Limits

Decachlorobiphenyl-13C12 63 57 25 - 113

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-167912 Method: 8270C
Preparation: 3520C

 Lab Sample ID:
 MB 680-167912/4-A
 Analysis Batch:
 680-168320
 Instrument ID:
 MSG

 Client Matrix:
 Water
 Prep Batch:
 680-167912
 Lab File ID:
 g1205.d

Dilution: 1.0 Units: ug/L Lab File ID: g1205.d Initial Weight/Volume: 1000 mL

 Date Analyzed:
 05/12/2010 1213
 Final Weight/Volume:
 1 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 1 uL

Analyte	Result	Qual	MDL	RL
1,2-Dichlorobenzene	<10		0.53	10
1,4-Dichlorobenzene	<10		0.54	10
2,4,6-Trichlorophenol	<10		0.85	10
4-Nitrophenol	<25		1.9	25
o,o',o"-Triethylphosphorothioate	<10		1.0	10
2,4,5-Trichlorophenol	<10		1.2	10
Pentachlorophenol	<10		2.0	10
Phenol	<10		0.83	10
2,4-Dichlorophenol	<10		1.1	10
Surrogate	% Rec		Acceptance Limits	
2-Fluorobiphenyl	71		50 - 113	
2-Fluorophenol	34	X	36 - 110	
Nitrobenzene-d5	68		45 - 112	
Phenol-d5	57		38 - 116	
Terphenyl-d14	88		10 - 121	
2,4,6-Tribromophenol	59		40 - 139	

Method Blank - Batch: 680-167912 Method: 8270C Preparation: 3520C

Lab Sample ID: MB 680-167912/4-A Analysis Batch: 680-168791 Instrument ID: MSF

Client Matrix: Water Prep Batch: 680-167912 Lab File ID: f0080.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 100

 Dilution:
 1.0
 Units:
 ug/L
 Initial Weight/Volume:
 1000 mL

 Date Analyzed:
 05/17/2010 1611
 Final Weight/Volume:
 1 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 1 uL

 Analyte
 Result
 Qual
 RL
 RL

 Pentachlorophenol
 <1.0</td>
 1.0
 1.0

Client: Golder Associates Inc. Job Number: 680-57431-1

Lab Control Sample - Batch: 680-167912

Method: 8270C Preparation: 3520C

Lab Sample ID: LCS 680-167912/5-A

Client Matrix: Water Dilution: 1.0

Date Analyzed: 05/12/2010 1501 Date Prepared: 05/08/2010 1209 Analysis Batch: 680-168320

Prep Batch: 680-167912

Units: ug/L

Instrument ID: MSG Lab File ID: g1206a.d

Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,2-Dichlorobenzene	100	51.8	52	39 - 110	
1,4-Dichlorobenzene	100	52.5	53	38 - 110	
2,4,6-Trichlorophenol	100	72.8	73	46 - 120	
4-Nitrophenol	100	84.8	85	30 - 122	
2,4,5-Trichlorophenol	100	85.0	85	47 - 122	
Pentachlorophenol	100	71.6	72	37 - 132	
Phenol	100	57.4	57	39 - 110	
2,4-Dichlorophenol	100	69.3	69	46 - 115	
Surrogate	% R	% Rec		ceptance Limits	
2-Fluorobiphenyl	79		50 - 113		
2-Fluorophenol	51	51		36 - 110	
Nitrobenzene-d5	60			45 - 112	
Phenol-d5	56	56		38 - 116	
Terphenyl-d14	81		10 - 121		
2,4,6-Tribromophenol	84			40 - 139	

Client: Golder Associates Inc. Job Number: 680-57431-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 680-167912

Method: 8270C Preparation: 3520C

MS Lab Sample ID: Client Matrix:

Dilution:

680-57431-3 Water 1.0 Analysis Batch: 680-168320 Prep Batch: 680-167912 Instrument ID: MSG Lab File ID: g1210.d

Date Analyzed: Date Prepared:

05/12/2010 1413 05/08/2010 1209 Initial Weight/Volume: 500 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

MSD Lab Sample ID: Client Matrix: 680-57431-3 Water

Analysis Batch: 680-168320 Prep Batch: 680-167912 Instrument ID: MSG Lab File ID: g1211.d

Dilution: 1.0

Date Analyzed: 05/12/2010 1437 Date Prepared: 05/08/2010 1209 Initial Weight/Volume: 500 mL Final Weight/Volume: 0.5 mL Injection Volume: 1 uL

	<u>%</u>	Rec.						
Analyte	MS	MSD	Lim	iit	RPD	RPD Limit	MS Qual	MSD Qual
1,2-Dichlorobenzene	37	48	39	- 110	26	40	F	
1,4-Dichlorobenzene	35	44	38 -	- 110	21	40	F	
2,4,6-Trichlorophenol	48	66	46	- 120	32	40		
4-Nitrophenol	57	59	30 -	122	2	40		
2,4,5-Trichlorophenol	51	75	47	122	37	40		
Pentachlorophenol	65	76	37 -	- 132	16	40		
Phenol	35	53	39 -	- 110	39	40	F	
2,4-Dichlorophenol	42	65	46	- 115	43	40	F	F
Surrogate		MS % Rec		MSD %	6 Rec	Acce	ptance Limits	
2-Fluorobiphenyl		45	Х	69		50	0 - 113	
2-Fluorophenol		27	X	48		36	6 - 110	
Nitrobenzene-d5		37	X	60		45	5 - 112	
Phenol-d5		37	X	51		38	3 - 116	
Terphenyl-d14		65		50		10	0 - 121	
2,4,6-Tribromophenol		59		73		40	0 - 139	

14 - 115

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-167911 Method: 8081A_8082 Preparation: 3520C

Lab Sample ID: MB 680-167911/5-A Analysis Batch: 680-168211 Instrument ID: SGZ

Client Matrix: Water Prep Batch: 680-167911 Lab File ID: ze10015.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

05/10/2010 1721 Date Analyzed: Final Weight/Volume: 5 mL Date Prepared: 05/08/2010 1209 Injection Volume: 2 uL Column ID: **PRIMARY**

Analyte	Result	Qual	MDL	RL
PCB-1016	<0.25		0.036	0.25
PCB-1221	<0.25		0.14	0.25
PCB-1232	<0.25		0.055	0.25
PCB-1242	<0.25		0.090	0.25
PCB-1248	<0.25		0.18	0.25
PCB-1254	<0.25		0.13	0.25
PCB-1260	<0.25		0.10	0.25
PCB-1268	<0.50		0.13	0.50
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	71		35 - 120	
DCB Decachlorobiphenyl	84		14 - 115	
Surrogate	% Rec		Acceptance Limits	
Tetrachloro-m-xylene	66		35 - 120	

Lab Control Sample - Batch: 680-167911 Method: 8081A_8082

Preparation: 3520C

Lab Sample ID: LCS 680-167911/6-A Analysis Batch: 680-168211 Instrument ID: SGZ Client Matrix: Water Prep Batch: 680-167911 Lab File ID: ze10016.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

76

Date Analyzed: 05/10/2010 1738 Final Weight/Volume: 5 mL Date Prepared: 05/08/2010 1209 Injection Volume: 2 uL Column ID: **PRIMARY**

Analyte Spike Amount % Rec. Limit Result Qual PCB-1016 57 - 124 10.0 11.1 111 PCB-1260 10.0 58 - 124 11.6 116

Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 87 35 - 120 DCB Decachlorobiphenyl 92 14 - 115

Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 82 35 - 120 DCB Decachlorobiphenyl 84 14 - 115

DCB Decachlorobiphenyl

Client: Golder Associates Inc. Job Number: 680-57431-1

Matrix Spike/ Method: 8081A_8082
Matrix Spike Duplicate Recovery Report - Batch: 680-167911 Preparation: 3520C

MS Lab Sample ID: 680-57431-4 Analysis Batch: 680-168211 Instrument ID: SGZ Client Matrix: Water Prep Batch: 680-167911 Lab File ID: ze10028.d Dilution: 1.0 Initial Weight/Volume: 500 mL 05/10/2010 2119 Date Analyzed: Final Weight/Volume: 2.5 mL Date Prepared: 05/08/2010 1209 Injection Volume: 2 uL **PRIMARY** Column ID:

 MSD Lab Sample ID:
 680-57431-4
 Analysis Batch:
 680-168211
 Instrument ID:
 SGZ

 Client Matrix:
 Water
 Prep Batch:
 680-167911
 Lab File ID:
 ze10029.d

 Dilution:
 1.0
 Initial Weight/Volume:
 500 mL

 Date Analyzed:
 05/10/2010 2136
 Final Weight/Volume:
 2.5 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 2 uL

Column ID: PRIMARY

	9/	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
PCB-1016	89	62	57 - 124	36	40		р
PCB-1260	76	97	58 - 124	24	40		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
Tetrachloro-m-xylene		61	77		3:	5 - 120	
DCB Decachlorobiphenyl		54	64		1	4 - 115	
Surrogate		MS % Rec	MSD 9	% Rec	Acce	ptance Limits	
Tetrachloro-m-xylene		56	53		3	5 - 120	
DCB Decachlorobiphenyl		52	47		1	4 - 115	

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-167911 Method: 8141A

Lab Sample ID: MB 680-167911/5-A

Preparation: 3520C

Instrument ID: SGO

Analysis Batch: 680-168078 Client Matrix: Water Prep Batch: 680-167911 Lab File ID: oe10011.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

05/10/2010 1834 Date Analyzed: Final Weight/Volume: 5 mL 05/08/2010 1209 Date Prepared: Injection Volume: 2 uL Column ID: **PRIMARY**

Analyte MDL RL Result Qual Methyl parathion <0.25 0.12 0.25 Ethyl Parathion < 0.50 0.25 0.50 Tetraethyldithiopyrophosphate < 0.25 0.12 0.25 Surrogate % Rec Acceptance Limits

Triphenylphosphate 86 26 - 134

Client: Golder Associates Inc. Job Number: 680-57431-1

Lab Control Sample/ Method: 8141A
Lab Control Sample Duplicate Recovery Report - Batch: 680-167911 Preparation: 3520C

LCS Lab Sample ID: LCS 680-167911/9-A Analysis Batch: 680-168078 Instrument ID: SGO

Client Matrix: Water Prep Batch: 680-167911 Lab File ID: oe10012.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10

 Dilution:
 1.0
 Units: ug/L
 Initial Weight/Volume:
 1000 mL

 Date Analyzed:
 05/10/2010 1906
 Final Weight/Volume:
 5 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 2 uL

 Column ID:
 PRIMARY

LCSD Lab Sample ID: LCSD 680-167911/10-A Analysis Batch: 680-168078 Instrument ID: SGO

Client Matrix: Water Prep Batch: 680-167911 Lab File ID: oe10013.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 05/10/2010 1931 Final Weight/Volume: 5 mL

Date Prepared: 05/08/2010 1209 Injection Volume: 2 uL Column ID: PRIMARY

% Rec. Analyte LCS LCSD Limit RPD **RPD Limit** LCS Qual LCSD Qual 31 - 130 Methyl parathion 68 80 40 16 Surrogate LCS % Rec LCSD % Rec Acceptance Limits

 Triphenylphosphate
 91
 92
 26 - 134

Lab Control Sample/ Method: 8141A
Lab Control Sample Duplicate Recovery Report - Batch: 680-167911 Preparation: 3520C

 LCS Lab Sample ID:
 LCS 680-167911/11-A
 Analysis Batch:
 680-168078
 Instrument ID:
 SGO

 Client Matrix:
 Water
 Prep Batch:
 680-167911
 Lab File ID:
 0e10014.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

Date Analyzed: 05/10/2010 1956 Final Weight/Volume: 5 mL

 Date Analyzed:
 05/10/2010 1956
 Final Weight/Volume:
 5 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 2 uL

 Column ID:
 PRIMARY

LCSD Lab Sample ID: LCSD 680-167911/12-A Analysis Batch: 680-168078 Instrument ID: SGO

Client Matrix: Water Prep Batch: 680-167911 Lab File ID: oe10015.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 100

 Dilution:
 1.0
 Units: ug/L
 Initial Weight/Volume:
 1000 mL

 Date Analyzed:
 05/10/2010 2020
 Final Weight/Volume:
 5 mL

 Date Prepared:
 05/08/2010 1209
 Injection Volume:
 2 uL

te Prepared: 05/08/2010 1209 Injection Volume: 2 uL
Column ID: PRIMARY

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Ethyl Parathion 84 48 45 - 132 54 40 Tetraethyldithiopyrophosphate 84 81 53 - 130 3 40 LCS % Rec LCSD % Rec Acceptance Limits Surrogate Triphenylphosphate 95 88 26 - 134

Client: Golder Associates Inc.

Job Number: 680-57431-1

Method Blank - Batch: 680-168245

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 680-168245/18-A

Client Matrix:

Water

Dilution:

Date Analyzed: 05/13/2010 0012 Date Prepared: 05/12/2010 0956

1.0

Analysis Batch: 680-168433 Prep Batch: 680-168245

Units: mg/L

Instrument ID: ICPD

Lab File ID: 168245.chr

Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	RL	
Arsenic	<0.020		0.010	0.020	
Barium	<0.010		0.0020	0.010	
Beryllium	<0.0040		0.00010	0.0040	
Cadmium	<0.0050		0.0020	0.0050	
Chromium	<0.010		0.0020	0.010	
Cobalt	<0.010		0.0010	0.010	
Lead	<0.010		0.0034	0.010	
Manganese	<0.010		0.0030	0.010	
Nickel	<0.040		0.0040	0.040	
Vanadium	<0.010		0.0030	0.010	

Lab Control Sample - Batch: 680-168245

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 680-168245/19-A

Client Matrix:

Dilution:

Water

1.0

Date Prepared: 05/12/2010 0956

Date Analyzed: 05/13/2010 0017

Analysis Batch: 680-168433 Prep Batch: 680-168245

Units: mg/L

Instrument ID: ICPD

Lab File ID:

168245.chr

Initial Weight/Volume: Final Weight/Volume:

50 mL 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Arsenic	2.00	2.07	104	75 - 125	
Barium	2.00	2.17	108	75 - 125	
Beryllium	0.0500	0.0530	106	75 - 125	
Cadmium	0.0500	0.0535	107	75 - 125	
Chromium	0.200	0.213	106	75 - 125	
Cobalt	0.500	0.534	107	75 - 125	
Lead	0.500	0.528	106	75 - 125	
Manganese	0.500	0.537	107	75 - 125	
Nickel	0.500	0.534	107	75 - 125	
Vanadium	0.500	0.525	105	75 - 125	

Client: Golder Associates Inc. Job Number: 680-57431-1

Method Blank - Batch: 680-168114 Method: 7470A

Preparation: 7470A

Lab Sample ID: MB 680-168114/23-A Analysis Batch: 680-168214 Instrument ID: LEEMAN1

Client Matrix: Water Prep Batch: 680-168114 Lab File ID: 051110.chr

Dilution: 1.0 Units: mg/L Initial Weight/Volume: 50 mL

Date Analyzed: 05/12/2010 1223 Final Weight/Volume: 50 mL

Date Prepared: 05/11/2010 1121

 Analyte
 Result
 Qual
 MDL
 RL

 Mercury
 <0.00020</td>
 0.000091
 0.00020

Lab Control Sample - Batch: 680-168114 Method: 7470A
Preparation: 7470A

Preparation. 7470A

 Lab Sample ID:
 LCS 680-168114/24-A
 Analysis Batch:
 680-168214
 Instrument ID:
 LEEMAN1

 Client Matrix:
 Water
 Prep Batch:
 680-168114
 Lab File ID:
 051110.chr

 Dilution:
 1.0
 Units: mg/L
 Initial Weight/Volume: 50 mL

 Date Analyzed:
 05/12/2010 1226
 Final Weight/Volume: 50 mL

 Date Prepared:
 05/11/2010 1121

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Mercury
 0.00250
 0.00230
 92
 80 - 120

Serial Number 029830

Tec	TestAmerica				ORI)	X	~510	tAmeri 2 LaRo annah,	che Av	enue	1			F	Vebsite: wwv Phone: (912) Fax: (912) 35		c.com			
7445,446 Pr. (\$240)	WS-063-49-47-6-7		750 (46)86°) Alte	rnate L	aborat	ory Na	me/Loc	ation			hone:			
	ER IN ENVIR	ONMENTAL						\bot						,	Δ.		h	ax:	Taras		OF.
PROJECT REFE	la Ann	ston	PROJECT NO).	PROJECT LOCATION (STATE)		TYF				٦		RE	QUIRE	TANALY	SIS			PAGE		OF
TAL (LAB) PROJ	ECTMANAGER	1	P.O. NUMBER	?	CONTRACT NO.		Т	П	7	4	808				召布				STANDARD R	EPORT	
CLIENT (SITE) P	la (I.		CLIENT PHO	VE.	CLIENT FAX	CATE			N.	7	05		2	0	34						
	0.71	uds	845,30	E-8703	CHERTIAN	QNI			S	00	4.	80	4	0	Eta Fa	7			DATE DUI		
CLIENT NAME	11	. 1 -	CLIENT E-MA	IL		B (G))F, S	7	2	E	0	0	23	1			DELIVERY		∅
John	Jiy G	older_	tricha	135(a) go	lder.com	GRA	⊆			OPPS 2781414	PLB 8081.4	PUR 680	2/20C8270C	VOC 8260B	Total Metalsus	×			(SURCHARGE		
CLIENT ADDRES	ss 3730	Chamb	ploetuc	rerRd.	lder.com Mantalay	(C) OR GRAB (G) INDICATE	TER		9	3	2	2	N	Š	07						11-10
COMPANY CON	TRACTING THIS	WORK (if app	moudity C	via	Maria on	COMPOSITE (C	AQUEOUS (WATER)		NONAQUEOUS LIQUID (OIL, SOLVENT,)		, 100 m				W		VE		NUMBER OF (PER SHIPMEN		S SUBMITTED
SAM	-			LE IDENTIFICATIO	IN .	OWP	SEE	AIR	NA NA			NUN	ABER O	F CONT	AINERS	SUBMIT	TED	I	R	EMARKS	S
DATE	TIME	1500				1.	Y O	7	-	-, T	2	7	Z	3	ī				Level	71	
	3:05AM					9		++		2	-	2			-				Level	11	
20-10		SEEP		****		4	X .	++	-	2	2	4	2	3	1					/	
5-6-10	4:20A	PIELC	BLANK	-1	run aham a a	1	4	₩.	_	1	1	1		3					1		
<u> </u>						11	\perp	$\bot \bot$													
		Wasan																			
			24 - 030000000000000000000000000000000000			П				N. T.				w server and							
							T		T												
		***************************************		***************************************		\prod		\Box													
REUNQUISHED E	(DATE 5-6-10	5:30090	RELINQUISHED BY: (SIGN	NATUR	L E)	L L			DATE		TIME	L.	RELIN	QUISHE	D BY: (s	SIGNATURE)	DATE		TIME
RECEIVED BY: (SI			DATE	TIME	RECEIVED BY: (SIGNATURE	E)					DATE		TIME	<u></u>	RECE	VED BY	: (SIGNAT	URE)	DATE		TIME
		***	1	L	MMA	LABO	PATO	ORY U	ISE (ONLY					L			***			
RECEIVED FOR L	ABORATORY BY	:	DATE		CUSTODY INTACT CUSTOI				S	AVANI	NAH).		LABOR	RATORY	REMAP	KS					
Deory	Klones		5/7/10	4	YES O NO O			(#1)			57431			0.0	1.4	1.5 0	8				

Serial Number 029832

TestAmerica				D	9	51	stAme 02 LaF Ivannal	loche A)				Website: ww Phone: (912) Fax: (912) 35		nc.com	
					\subset	O Alt	ernate	Labora	itory Na	me/Lo	cation			Phone:			
THE LEADER IN ENVIRONMENTAL TESTING										Fax:							
PROJECT REFERENCE PROJECT NO.	PROJECT LOCATION (STATE)		MAT	RIX PE				S(F	R	EQUIRE	D ANAL	/SIS			PAGE	- 47	OF
TAL (LAB) PROJECT MANAGER LICYA (T. CLIENT (SITE) PM CLIENT PHONE 1 CLIENT PHONE 845-300-87	CONTRACT NO.	IDICATE			SOLVENT,)	2808		15/00	10 CS						STANDARD F DELIVERY DATE DU		0
Solutial Golder trichards	aplder com	R GRAB (G) INDICATE	(8)		NONAQUEOUS LIQUID (OIL, SOI	REDEA THE	PCB 680	25 25 tg	00 00 00 00 00						EXPEDITED F DELIVERY (SURCHARGE	:)	\$
CLIENT ADDRESS 3730 Chamble Tucker Rd A	Hanta CM	0 (0)	ATER)	20	SLIC	<u>R</u>	A	100	26	-	-				DATE DU		
Solution		COMPOSITE (C) OR	AQUEOUS (WATER)	DO NO.	AQUEOL		- Annahista de la constitución d						VL		PER SHIPMEN		S SUBMITTED
SAMPLE SAMPLE IDENTIFICATION				AIR AIR	NON			NU	IMBER C	F CON	AINERS	SUBMIT	TED		В	EMARKS	
		G				2	2	ı	Ø						Level	II	-
\$ 6-10 4:00M SEEP-0.1U 5-6-10 Trip Blank-1						6	\$	Ø									
O																	
fr						333000 3000											
P																	
															M		
						***************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
		\top	T													***	
	**************************************		\dagger														
		$\dagger \dagger$	1		H												
		Ħ	1														
		$\dagger \dagger$		T													
RELINQUISHED BY: (SIGNATURE) DATE TIME S-10-10 5:30	RELINQUISHED BY: (SIG	NATURI	<u> </u> E)		LL.		DATE	L	TIME	Lawri	RELIN	QUISHE	D BY: (S	I I	DATE		TIME
RECEIVED BY: (SIGNATURE) DATE TIME	RECEIVED BY: (SIGNATUR	E)			***************************************		DATE		TIME		RECE	VED BY:	(SIGNATI	URE)	DATE		TIME
LA				ORY	USE	ONLY	<u> </u>				L						
RECEIVED FOR LABORATORY BY: DATE TIME (SIGNATURE)	ECEIVED FOR LABORATORY BY: DATE TIME CUSTODY INTACT CUSTODY		TOD	Υ	1	SAVAN LOG N	NAH O.		LABOR		REMAR		***************************************		Approximation of the second		
George Comes 5/7/10 0924	YES O			14	3		5743	1		0.	9/1.	1/1.5	10.8	}	70771200 - 000-000-000-000-000-000-000-000-00	Washington .	

Login Sample Receipt Check List

Client: Golder Associates Inc. Job Number: 680-57431-1

Login Number: 57431 List Source: TestAmerica Savannah

Creator: Conner, Keaton

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	4 coolers rec'd on ice
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.9, 1.4, 1.5, and 0.8 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	MS/MSD not requested (no additional volume provided).
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	N/A	
Sample Preservation Verified	True	

MONITORING WELL DEVELOPMENT LOG

Project Number	er <u>0</u>	43-3746-	013.2			Page	_ of			
Project Name	- Location <u></u>	SOLUTAN	W 10 20 - 103							
Well ID:	owe-50			Date: 4	6/10	MIN.				
Water Level:	51.74			Time (Water Level): 1075						
Description of			THE POINT O	IN POL						
Purging Time: On @	1115		2							
20.00		2111 100000			/1					
Evacuation Me	thod: CLE	CTRIC SUR	MMERSIBLE }	Prast (mi	ONSOON)					
Well Depth:	71.9	3		Volume in Well	(gal):	23				
Water Level:	51.74			Well Diameter:						
	20.16					Zin (was	ler column depl			
	ot:			Total Volume Re	emoved (gal):	50				
	nnel: Jaw		***************************************							
	Λ.		NT/PURGING DA	ATA AND FIELD	PARAMETERS					
Date/Time:	4/6/10 4133	4/6/10 1223	1/6/10 1230	4/6/10 1235						
Color:	ten	Hred	Had	H red						
Odor:	sweet es	Sweet	Swee	Sweet						
Appearance:	Clardy	Cloudy	Blighty Clarky	stog Hay cloudy						
Temperature (C):	19.0	18.76	18.53	18.58						
pH:	1.37	4.23	4.23	4,23						
Turbidity (NTU):	71000	7.62	750	185						
Spec. Cond. (umhos/cm): DO	823	737	732	7/2						
(mg/L):	3.34	3,33	3.0	Z.73						
ORP (mV):	123,8	-196	1495	153,0						
Removed (gallons):	ZOGAL	35gal	4594	so gul						
PHW	63.3	68.9	NO.	TES:						
Representa	ative Water (Site	-Wide QAPP, re	v. 5, September	2008):						
pH = Temperatu Specific Co Turbidity =	re = onductance =	+/- 0.1 Standar +/- 0.5C +/- 10 percent < 10 NTUs or +		ıreater than 10 N	TU (if possible)					

LOW FLOW MONITORING WELL PURGING LOG

Project Number Project Name - Location	843-3746-003.2 Solutia, Anniston, AL -	Page/ of/_
	Coldia, Allistoli, AL	
Well ID: QWR-5D D	ate: 4/7/10 Water Leve	el: 51.89 Time (Water Level): 1448
Purging Time: On @		Evacuation Method: ELECTRIC SUBMIRSIBLE PUMP (STAINLESS STEEL)
Off @:		(STAINLESS STEEL)
Well Depth: 68'655	(71.9' BTOE)	Volume in Well (gal): 3,2421 3x vol = 9.6501 5x #1-16gal
Screen Depth: 68-58'6	5	Evacuation Rate (gal/min): 0.7 gpm
Purging Personnel: Jan	IN KING	Total Volume Removed (gal): 13 5 5/

PURGING DATA AND FIELD PARAMETERS

Date/Time:	Temperature (C):	pH:	Turbidity (NTU):	Spec. Cond. (umhos/cm):	DO (mg/L):	ORP (mV):	Volume: (Gallons)	Depth to Water (FT):
4/1/10,535	18.94	7.34	143	802	5,50	96.0	3.0	54.25
1845	18.35	4,26	33.8	769	3.26	103.4	***	55215
1533	18.23	4,20	18.6	744	2.45	107.8	7.0	55.61
1558	18.37	4.18	15.1	751	2.29	109.1	8.0	55.65
1603	18.22	4.17	12.1	737	2.04	114.2	9.0	55.60
1608	1834	4.11	9.41	731	1.93	113.8	10.0	5'5.40
0613	18.51	4.08	10.9	735	1.30	114.8	11.0	54.95
1618	18.62	4.09	8.57	732	1.70	115.5	12.0	55.10
1623	1859	4.09	9.81	734	1.74	116.9	13.0	33.40
							-	
		72						
							1	
		7						

Field Crew:	Josh Richards/ John King	

NOTES:

Stabilization Requirements as per the EPA SOP for Low-Flow/Minimal Drawdown GW Sample Collection Three successive readings every 3 to 5 minutes to include:

pH =

+/- 0.1 Standard Units

Specific Conductance =

ORP =

+/- 3 percent +/- 10 mV

Dissolved Oxygen =

+/- 0.3 mg/L

Turbidity =

< 10 NTU or +/- 10 percent when turbidity is greater than 10 NTU.

GROUNDWATER SAMPLING FORM

	OKOONDI	WATER SAMPEING FORM		1 /
Project Number	043-3746,-603.2		Page	of
Project Name/Site Name	Solutia, Anniston, AL -			
Well ID OWR	-50	COC ID #1 OWR-5D	= Original S	ample
Event Add+11 Sa.	MPLING SCOPE - April 10	COC ID #2 0W R-5D-DU	e Duplicate	
Date 4/7/10		COCID#3 FIELD BLANK	= Field Blar	nk
Begin Time 1650		COCID#4 ms and ms	= MS/MSD	
End Time 1810		COC ID #5 BUR-50F - Zanfowa		Sample - Filtered
Sampler(s) John Kill	4	COC ID #6 WA		
	LDY 75°			
	CAMPING	ATA / FIFE D DADAMETED	•	
		DATA / FIELD PARAMETER	1.74	
Temperature (°C)	18.59	DO (mg/L)		
pH (Standard Unit)	4.09	ORP (mV)	116.9	(1 14
Conductivity (µmhos/cm)	734	Color	Clean yellowish	(1.4W)
Turbidity (NTU)	9.81	1/ 62		
Sampling Method/Material	- Stainless Steel Sub	mensible, funt		
	CONTAINER A	ND ANALYSES DESCRIPTI	ON	
COLLECTED	CONTAINER	R AND ANALYSES		NOTES
	vial with HCl for VOA anal			
	al with no preservative for	SVOA analysis (8270) Organophos. Pest. Analysis (814	11)	
	al with no preservative for l			100 2 2 MS + 2M S!
4 1 L glass vi	al with no preservative for l	PCB analysis (filtered)	7032	4,700.1x
		nalysis (see COC for exact meta	ıls)	
500 mi pias	tic with HNO3 for metals a	naiysis (filtered)		
		REMARKS		
		NE III ANTO		
			y-1-20-20-20-20-20-20-20-20-20-20-20-20-20-	74
8				
		AND THE PROPERTY OF THE PROPER		
METALS	P/	ARAMETER LIST		
Mercury- Y N, Cobalt-	Y (N)	v		
VOCs				
Chlorobenzene- Y N				
SVOCs				
		Y N, 1,2-dichlorobenzene-	Y (N)/1,4-dichlorob	enzne- Y(N,
2,4,6-trichlorophenol- Y	N, pentachlorophenol- Y	(J.)		NATION.
ORGANOPHOSPHOROUS Sulfotepp- Y N, Parathior				
PCBS-YN.				
Tim Fish	-1.7.1.1-12			
Field Crew: Josh Richard	rds/ John King			

Field Instrument Turbidity Calibration Records

INSTRUMENT (MAKE/MODEL NO.) 49CH 2100 TORBIDI AN ETER INSTRUMENT NO. HT-/

STANDARD INFORMATION

Origin Date: 8/09 Standard Vendor: Hach

Prepared Date: 8/09 Where Prepared: Cozda

Expiration Date: $\frac{2}{|y|}$

Units:Nephelometric Turbidity Unit

Standard 5 05 Nephelometric Turbidity Unit

Standard 580 Nephelometric Turbidity Unit

Standard 5/8 Nephelometric Turbidity Unit

Standard — Nephelometric Turbidity Unit

Standard Replicionettic Furbidity Chit									
DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C	STD VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES or NR)	TYPE (INIT, CONT)	SAMPLER INITIALS
4/6/10	1128	NA	5.05	4.85	4.0	P	NR	init	Si
1	1	1	58,0	58.1	6.2	P	NR	inst	gi
	4	V	518	5/7	0.2	ρ	NR	Nr	A
	1245	MA	5,03	5,23	0.34	9	NR	CONT	FL-
	(1/	5810	57.9	0.2	P	NR	CONT	K
V	V	V	518	SIE	0	P	NR	cont	AL
4/7/10	izos	44	3.05	4.97	16	P	NR	CONT	K
Ĺ			58.0	60,9	0.5	۴	wr	COUT	7
V	V	4	518	519	0.2	P	NR	CONT	AL
1	1810	NA	5,05	5.11	1.2	7	NR	CENT	-A-
	l i		58.0	58.7	1.2	P	NR	CONT	K
1	d		519	518	0	۴	na	Caut	40
		1						9	
	0								
							-		
									2010

Calibration values for turbidity need to be within 10% of the standard for values.

NR – Not Required. If at end of the day or within calibration range, calibration is not performed.

Field Instrument ORP/Dissolved Oxygen Calibration Records

INSTRUMENT (MAKE/MO	DEL NO.) <u> </u>	INSTRUMENT NO. 556-3
STANDARD INFORMATIO	N	
Origin Date: 8/09	_Standard Vendor:	GEOTALL
Prepared Date: 8/09	Where Prepared:	Goiden
Expiration Date: 4/10	Units: Millivolts	
Standard DO - SATUR	ATED AIR	
Standard _ CEP - ZZO,	W solution (@25°C	
Standard		

DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C	STD VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES or NR)	TYPE (INIT, CONT)	SAMPLER INITIALS
46/10	17-18	24.4	3794	8.75	C.S	P	hip_	دره	gr-
, j	1250	23.2	8,546	8,55	0	ρ	WR	10H	A
11/7/10	1/25	26.2	8,084	8.05	0.4	ρ	NI	CONT	A
V	1815	24.9	\$.279	8.28	0	P	NR	COWT	ju
36.0									
4/2/8	1130	23.9	221.6	221.6	G	P	NR	INTT	AL
Ĺ	1300	25./	220	221.4	0.6	P	NP	CONT	411
4/7/10	1200	25.0	220	216.7	1.5	P	NR-	COUT	92
1	1819	25.5	220.8	217.2	1.6	P	NR	(INT	4

Acceptable ORP calibration check is if the meter reads within +/- 10 mV units of calibration standard. Acceptable DO calibration check is if the meter reads within +/- 0.2 mg/L of calibrated value.

NR - Not Required. If at end of the day or within calibration range, calibration is not performed.

Field Instrument Conductivity Calibration Records

INSTRUMENT (MAKE/MODEL NO.) 45 555 INSTRUMENT NO. 556-3										
STANDARD INFORMATION										
Origin Date: 2/10	W									
Prepared Date: 2/10	Where Prepared:	Gorden								
	Units: umhos/cm									
Standard Air Humhos/cm	77 TO SW 1991	11 Sec. 11 Sec								
Standard 500 umhos/cm										
Standard Zooe umhos/cm										

DATE (mm/dd/yy)	TIME (hr:min)	TEMP DEG C ^o	STD VALUE	INSTRUMENT RESPONSE	% DEV	PASS/ FAIL	CALIBRATED (YES or NR)	TYPE (INIT, CONT)	SAMPLER INITIALS
4/6/18	1120	20.8	84	84	0	P	NR	1N, 7	gh-
1	1	20,9	500	410	7.0	9	NR	. V. T	X
1		20.5	2000	1988	0.6	P	NR	INIT	SL
	1252	24.1	84	86	2.4	P	NR	CONT	K
		24.2	500	497_	1.6	p	NR	CONT	76
	b	24.2	2000	2006	0.3	P	NR	carr	7
4/1/le	113/	2247	84	56	24.	P	NR	CENT	Ac
1)	22.7	50C	493	1.4	P	NR	CONT	X
1	V	22.7	ZOCC	1990	22	P	NR	CONT	4
	1821	24.9	84	85	1.2	P	MR	Cent	a
		25.0	500	495	10	P	NR	LONT	ar.
1	64	24,7	2000	1972	1.4	P	NR.	CONT	94
			35004 61 4						
1050								35	
				3					37
			200=00						

Acceptable calibration check is if the meter reads within +/- 5% of the appropriate calibration standard.

NR - Not Required. If at end of the day or within calibration range, calibration is not performed.

Field Instrument pH Calibration Records

INSTRUMENT	(MAKE/MOI	DEL NO.) <u>VS1 559</u>	2	INSTRUMENT NO	556-3
STANDARD IN	FORMATIO	N			
Origin Date: _	8/09	_Standard Vendor:_	LS5		
Prepared Date:	8/09	_Where Prepared:	GOLDER		
Expiration Date:	sec below	Units: Standard U	<u>nits</u>		
Standard <u>4</u>	1.01 @ 25 Deg	C 6/11		3,	
Standard7	7.00 @ 25 Deg	C 3/11		No.	
Standard 1	00@ 25 Deg	C also			

DATE	TIME	TEMP	STD	INSTRUMENT	% DEV	PASS/	CALIBRATED	ТҮРЕ	SAMPLER
(mm/dd/yy)	(hr:min)	DEG C	VALUE	RESPONSE	100	FAIL	(YES or NR)	(INIT, CONT)	INITIALS
4/6/10	1173	21.4	4.01	4.19	4.5	P	NR	124	12
1	1	21.7	7,00	1,00	0	P	NR	(N,T	- St
V	1	21.6	10,00	9,90	1.0	P	NR	INIT	AL
	1257	75,1	4.01	4.15	3.5	P	NR	COM	AL
		24,9	7.00	7.02	0.3	ρ	NR	CONT	4
	1	25.0	10.00	9.92	0.8	P	NR	CONT	AL
4/1/10	1237	25/15	4.0/	4,13	3.0	P	NR	CONT.	1
1	1	24/2	7.06	6.97	0.4	P	NR	CONT	4
1	V	24.0	10.00	9,99	0.)	J	Nr	CONT	X
1	1827	24.4	4.01	4.12	2.7	P	NR	CONT	4
	1	24.8	7.00	7.01	0.1	ρ	NR	CONT	K
W_	1	24.8	10,00	9.91	0.9	P	NR	CONT	7
			ð#.						
					to the same				
			2			8	1 200		
			2						
7,0110.1.0									4000
		3-2							
									8
			34/A				-	25.00	
									limit i

Acceptable calibration check is if the meter reads within +/- 0.2 pH units of the value of appropriate calibration standard.

NR - Not Required. If at end of the day or within calibration range, calibration is not performed.