ΕΛSTΜΛΝ

Eastman solventborne adhesion promoters for difficult-to-adhere-to substrates

Features and benefits

- Promote adhesion to polypropylene, polyethylene, TPO, and other plastics
- Useful for one-step systems or primer formulas
- Useful for inks and coatings
- Promote adhesion to aluminum and galvanized steel
- Available in solution or powder form

Introduction

Polyethylene, polypropylene, and thermoplastic polyolefin (TPO) plastics are used in applications such as automotive parts, appliances, toys, containers, other molded items, and packaging films. To decorate and/or protect products made of these plastics, it is often desirable to apply a coating or to print an aesthetic design on the plastic part.

Adhesion to untreated plastic parts can be achieved by using Eastman adhesion promoters as part of a primer or by formulating a one-step topcoat containing the adhesion promoter. Some other plastics such as PPO and nylon and nonplastic surfaces including aluminum and galvanized steel can also be made more receptive to inks and coatings using Eastman adhesion promoters.

Adhesion to automotive and general industrial plastic products requires resistance to a variety of severe environmental conditions, including exposure to gasoline, acid rain, chemicals, and humidity. Eastman adhesion promoters are particularly useful in ensuring the adhesion properties of coatings under these severe environmental conditions.

For graphic arts and inks applications, Eastman adhesion promoters provide additional properties such as fast dry and enhanced elongation. Eastman solventborne adhesion promoters for difficult-to-adhere-to substrates (Continued)

Table 1 Markets

		Market										
Adhesion promoter	Automotive	General industrial	Graphic arts	Adhesives								
Eastman CP 730-1	1	1		1								
Eastman AP 550-1	1	1	1	1								
Eastman CP 343-1	1	1										
Eastman CP 164-1	1	1										
Eastman CP 343-3	1	1	1	1								
Eastman CP 515-2	1	1	1	1								
Eastman CP 153-2		1	1	1								

Table 2 Eastman solventborne adhesion promoter performance selector chart

	Appli	cation			Sub	strates		Performan	e properties a	and attributes
Eastman adhesion promoter	Used in primer	Used in coating	TPOª	PP ^b	PEc	Non-olefin plastics ^d	Metal®	Humidity resistance	Fuel resistance	Compatibility
CP 730-1 20% in xylene, Aromatic [™] 100	1		1	1		1	1	•	●	O
AP 550-1 25% in xylene, Aromatic [™] 100	1		1	1			1	e		\odot
CP 343-1 25%, 40%, 50% in xylene 100% solids	5		1	1		1	5	•	\bigcirc	O
CP 343-3 25%, 50% in xylene	1	1	1	1		1	1	O	0	•
CP 515-2 40% in xylene, toluene, Aromatic [™] 100		1	5	5		1	5	Ð	0	•
CP 153-2 25% in xylene	1				1			O	\mathbf{O}	O
-		D Fa	D air	O Poor						

aTPO = thermoplastic polyolefin

^bPP = polypropylene

^cPE = polyethylene

^dNon-olefin plastics = nylon, PPE/PA, ABS

 $^{\rm e}$ Metals = polished aluminum, galvanized steel, and contaminated steel

	Specific gravity @ 25°C (g/ml)	Weight per gallon (lb/gal)	Chlorine wt%	Gardner color	Softening point range, °C	Flash point °C (Toc)
Eastman CP 730-1 adhesion promoter						
20% in xylene	0.90	7.51	21–23	4	_	26 [⊾]
20% in Aromatic™ 100	0.90	7.51	21–23	4	_	26 [⊾]
Eastman AP 550-1 adhesion promoter						
25% in xylene	0.88	7.34	0	4		27 ^ь
25% in Aromatic [™] 100	0.88	7.34	0	4	_	47 ^b
Eastman CP 343-1 adhesion promoter						
25% in xylene	0.90	7.51	18–23	7	_	27
40% in xylene	0.93	7.76	18–23	8		23
50% in xylene	0.94	7.84	18–23	8		28
100%	1.03 (@ 23°C)	8.60 (@ 23°C)	18–23	Lt. tan powder	80–95	274
Eastman CP 343-3 adhesion promoter						
25% in xylene	0.91	7.59	26–32	6–7	_	23
50% in xylene	0.99	8.26	26–32	11	_	27
Eastman CP 515-2 adhesion promoter						
40% in xylene	0.96	8.01	26–32	3		28
40% in toluene	0.96	8.01	26–32	3		5
40% in Aromatic [™] 100	0.94	7.84	26–32	7		41
Eastman CP 153-2 adhesion promoter						
25% in xylene	0.97	8.10	21–25	12–15		30

Table 3 Typical properties^a of Eastman adhesion promoters

^aEastman makes no representation that the material in any particular shipment will conform exactly to the values given. ^bPensky-Martens Closed Cup.

Eastman adhesion promoters with low chlorine levels are soluble in Aromatic[™] hydrocarbons such as xylene, toluene, and Aromatic[™] 100. Cyclic hydrocarbon solvents such as methylcyclohexane and ethylcyclohexane can be used to dilute them. Low chlorine materials are not soluble in aliphatic hydrocarbons, esters, ketones, or alcohols but can be diluted, as supplied, with some long-chained ketones and esters, such as methyl amyl ketone and *n*-butyl propionate. When diluting them with long chain ketones and esters, the solutions may appear hazy. This haze does not appear to affect the product's ability to promote adhesion to PP or TPO. Eastman CP 343-3 adhesion promoter and CP 515-2 adhesion promoter are high-chlorine CPOs that have a greater tolerance for esters and ketones as shown in Table 4. Their greater tolerance for esters and ketones makes them easier to incorporate into topcoat systems.

Diluted 5% N.V. Adpro with:	Xylene	Toluene	Aromatic [™] 100	Heptane	Tetra- hydro- furan	Ethyl acetate	<i>n</i> -Propyl acetate	<i>n</i> -Butyl acetate	Methyl ethyl ketone	Methyl <i>n</i> -amyl ketone	Ethyl alcohol
Eastman CP 730-1	adhesion	promoter									
20% in xylene	1	1	1	x	1	x	x	x	x	х	x
20% in Aromatic [™] 100	1	1	1	x	1	x	x	x	x	x	x
Eastman AP 550-1	adhesion	promoter									
25% in xylene	1	1	1	x	x	x	x	x	х	x	х
25% in Aromatic [™] 100	1	1	1	x	x	x	x	x	x	x	x
Eastman CP 343-1	adhesion	promoter									
25% in xylene	1	1	1	x	1	x	x	х	х	х	х
40% in xylene	1	1	1	x	1	x	x	х	х	х	х
50% in xylene	1	1	1	x	1	x	x	x	х	х	х
100%	1	1	1	x	1	х	x	х	х	х	х
Eastman CP 343-3	adhesion	promoter									
25% in xylene	1	1	1	x	1	1	1	1	1	1	х
50% in xylene	1	1	1	x	1	1	1	1	1	1	х
Eastman CP 515-2	adhesion	promoter									
40% in xylene	1	1	1	x	1	x	1	х	1	1	х
40% in toluene	1	1	1	x	1	x	1	х	1	1	х
40% in Aromatic [™] 100	1	1	1	x	1	x	✓	x	1	1	x
Eastman CP 153-2	adhesion	promoter									
25% in xylene	1	1	1	х	1	х	х	х	х	х	х

Table 4 Solubility properties of Eastman adhesion promoters^a

Legend: \checkmark = reducible to 5% nonvolatile adhesion promoter x = not reducible to 5% nonvolatile adhesion promoter

^aSolubility of adhesion promoter, as supplied, diluted to 5% nonvolatile in a variety of solvents.

Solventborne CPOs storage and handling Eastman CP 730-1, AP 550-1, CP 343-1, and CP 153-2, used predominately as primers, have limited solubility and thus provide excellent redissolve resistance. Because of limited solubility, solutions of these adhesion promoters may become hazy, partially precipitate from solution, or gel with time on exposure to low temperature. Should any of the above conditions occur, warming the contents to approximately 38°-49°C (100°-120°F), while keeping away from sparks and open flame, with mild agitation, will generally return the product to its original condition. Static electricity with associated hazards can build up during handling or mixing nonpolar solvents such as xylene or toluene. It is the users' responsibility to determine the suitability of this information for their specific operations and to take all necessary precautions to ensure the safety and health of their employees and protection of the environment.

Storage of CP 730-1, AP 550-1, CP 343-1, and CP 153-2 solution products near 25°C (77°F) will minimize haze and gel formation. Storage above 50°C (122°F) may affect product quality.

Eastman CP 730-1 adhesion promoter

Eastman CP 730-1 adhesion promoter is designed to be the active component in automotive adhesion promoter primers used to ensure adhesion of color coats and topcoats to polypropylene (PP) and thermoplastic olefin (TPO) plastics for exterior and interior applications.

Eastman CP 730-1 adhesion promoter provides excellent adhesion properties for all typical basecoat chemistries. Adhesion promoters built around CP 730-1 exhibit superior gasoline and humidity resistance, which are required for the newer, high modulus TPOs being used today. Excellent adhesion performance is also achieved on other difficult substrates such as aluminum, galvanized steel, cold rolled steel, and difficult-to-adhere nonolefin plastics such as nylon, ABS, and other engineering plastic blends.

Eastman CP 730-1 adhesion promoter is available at 20 wt% solids in Aromatic[™] 100 or in xylene.

Compatibility

Table 5 shows the compatibility of Eastman CP 730-1 adhesion promoter with a variety of coating resins.

		-					-								
Sample #	Duramac [™] HS 207-2706°	Polymac [™] HS 057-5776ª	Polymac™ HS 220-2010ª	Polymac [™] HS 57-5789ª	Desmophen [™] 670A 80⁵	Paraloid™ AU608X°	Acrylamac [™] 232-1700ª	Epon™ 828 ^g	Xylene	Eastman CP 730-1 (20% in A-100) ^d	9:1	1:1	Ambient conditions		Rating ^f
1	6.26	—	—	—	—	—	—	—	68.8	25.0		•	•		Н
2	11.26	—	—	—	—	—	—	_	83.8	5.0	•		•		I
3	6.26	—	—	_	—	—	—	—	68.8	25.0		•		•	I
4	11.26	—	—	—	—	—	—	_	83.8	5.0	•			•	I
5	—	5.88	—	_	—	_	—	_	69.2	25.0		•	•		С
6	—	10.58	—	—	—	—	—	_	84.4	5.0	•		•		С
7	—	5.88	—	—	—	—	—	_	69.2	25.0		•		•	С
8	—	10.58	—	—	—	—	—	_	84.4	5.0	•			•	С
9	—	—	6.66	—	—	—	—	_	68.4	25.0		•	•		SH
10	—	—	12.00	—	—	—	—	—	83.0	5.0	•		•		SH
11	—	—	6.66	—	—	—	—	_	68.4	25.0		•		•	SH
12	—	—	12.00	—	—	—	—	_	83.0	5.0	•			•	SH
13	_	_	_	5.88	_	_	_	_	69.2	25.0		•	•		С
14	_	—	_	10.58	_	_	_	_	84.4	5.0	•		•		С
15	—	—	—	5.88	—	—	—	_	69.2	25.0		•		•	С
16	—	—	—	10.58	_	_	—	_	84.4	5.0	•			•	С
17	—	—	—	—	—	—	—	_	68.8	25.0		•	•		I
18	_	—	_		_	_	_	_	83.8	5.0	•		•		I
19	—	—	—	—	—	—	—	_	68.8	25.0		•		•	Ι
20	—	—	—	—	—	—	—	_	83.8	5.0	•			•	I
21	—	—	—	—	6.26	—	—	_	68.8	25.0		•	•		I
22	—	—	—	—	11.26	—	—	_	83.8	5.0	•		•		I
23	—	—	—	—	6.26	—	—	_	68.8	25.0		•		•	I
24	—	—	—	—	11.26	—	—	_	83.8	5.0	•			•	I
25	_	—	_	_	_	8.34	_	_	66.6	25.0		•	•		I
26	—	—	—	—	—	15.00	—	_	80.0	5.0	•		•		I
27						8.34			66.6	25.0		•		•	Ι
28						15.00			80.0	5.0	•			•	I
29					_	_	8.34	_	66.6	25.0		•	•		Ι
30		_	—			_	15.00	_	80.0	5.0	•		•		н
31						_	8.34	_	66.6	25.0		•		•	I
32		_					15.00	_	80.0	5.0	•			•	Н
33		_	—			_	_	5	70.0	25.0		•		•	С
34	_		_			_		9	86	5.0	•			•	С

Table 5 Compatibility of Eastman CP 730-1 adhesion promoter

^aResin supplied by Resolution Specialty Materials, Inc. (now PCCR USA, Inc.)

^eSamples were heated @ 60°C for 1 hour and evaluated the next day.

^bResin supplied by Bayer Aktiengelsellschaft Corp. ^cResin supplied by Rohm and Haas Company.

^dCPO used was Eastman CP 730-1 20% solids in Aromatic[™] 100.

^tRatings for solutions: C = compatible; I = incompatible; H = hazy; SH = slightly hazy ^gResin supplied by Momentive Speciality Chemicals, Inc.

How to use

Eastman CP 730-1 adhesion promoter is an adhesionpromoting resin that can be used in primers for polypropylene-based substrates. When used in primer applications, it can be used alone or it can be formulated with other resins to make up the adhesion-promoting primer. CP 730-1 may also be used as an additive to improve adhesion to polypropylene-based substrates. When using CP 730-1 as an additive, its compatibility will need to be determined before use. Brief descriptions for primer and additive applications follow:

Primer applications

- Clean substrate with isopropyl alcohol.
- Prepare Eastman CP 730-1 adhesion promoter as a primer at 5%–10% solids and apply to the substrate at a thickness of 0.1–0.3 mils (2.5–7.5µ).
- Primer may be air dried or heated at 80°C for approximately 10 minutes.
- Topcoats can be applied as soon as the primer has been dried.

Additive applications

- Clean substrate with isopropyl alcohol.
- Add 5%–25% Eastman CP 730-1 adhesion promoter, based on resin solids, to the coating, ink, or adhesive and mix thoroughly.
- Test for compatibility or effect on dry film properties.
- If adequate adhesion is not obtained, increase the amount of Eastman CP 730-1 until adhesion is obtained. Monitor any effects the addition of more CP 730-1 has on dry film properties.

Performance as a primer

Table 6 Percent retained adhesion of various automotive OEM topcoats on Sequel^a 1440 TPO after exposure to Cleveland humidity (ASTM D4585 at 58°C)

Topcoat	Coating bake temperature, °C	Time, h	% Retained adhesion
1K/1K⁵ (silver)	120	504	100
1K/2K° (white)	120	504	100
2K/2K ^d (white)	80	504	100

^aSolvay[™] Sequel 1440 TPO has been discontinued.

^b1K/1K = 1-part melamine-cured basecoat/1-part melamine-cured clearcoat. ^c1K/2K = 1-part melamine-cured basecoat/2-part polyurethane-cured clearcoat. ^d2K/2K = 2-part polyurethane-cured basecoat/2-part polyurethane-cured clearcoat.

Table 7 Gasoline resistance (GM 9501P Method B) on Sequel^a 1440 TPO

Topcoat	Coating bake temperature, °C	Time, h	% Retained adhesion
1K/1K⁵ (silver)	120	1	100/11
1K/1K⁵ (white)	120	1	100/22
1K/1K⁵ (white)	120	1	100/23

^aSolvay[™] Sequel 1440 TPO has been discontinued.

^b1K/1K = 1-part melamine-cured basecoat/1-part melamine-cured clearcoat.

Table 8 Gasoline resistance (Ford modified Juntunen) on Sequel^a 1440 TPO

Topcoat	Coating bake temperature, °C	Time, h	% Retained adhesion
1K/1K⁵ (silver)	120	1	100/0; Edge
1K/2K° (blue)	120	1	98/0; Edge
2K/2K ^d (white) ^c	80	1	91/0; Edge

^aSolvay[™] Sequel 1440 has been discontinued.

b1K/1K = 1-part melamine-cured basecoat/1-part melamine-cured clearcoat.
c1K/2K = 1-part melamine-cured basecoat/2-part polyurethane-cured clearcoat.
d2K/2K = 2-part polyurethane-cured basecoat/2-part polyurethane-cured clearcoat.

Eastman adhesion promoters were designed to promote adhesion of coatings, inks, and adhesives applied over polypropylene- and polyethylene-based substrates, but can also be used to promote adhesion to difficult-toadhere nonolefin plastic substrates. Table 9 shows the adhesion-promoting properties of Eastman CP 730-1 adhesion promoter and Eastman AP 550-1 adhesion promoter when utilized as primers for a variety of nonolefin plastic substrates.

Table 9 Percent retained adhesion of automotive OEM topcoat^a applied over nonolefin plastics

Substrate	Adhesion promoter	Initial adhesion ASTM D33598	Adhesion after 72 hours humidity (ASTM D3359 B w/ASTM D4585), 120°F
Nylon⁵	Eastman CP 730-1	100	100
Nylon	None	0	_
Nylon⁵	Eastman AP 550-1	100	100
Nylon	None	0	—
PPE/PA ^c	Eastman CP 730-1	100	100
PPE/PA	None	0	—
PPE/PA ^c	Eastman AP 550-1	40	0
PPE/PA	None	0	—
ABS ^d	Eastman CP 730-1	100	100
ABS	None	20	0
ABS ^d	Eastman AP 550-1	60	0
ABS	None	20	0
PPE ^e	Eastman CP 730-1	100	100
PPE	None	100	100
PPE ^e	Eastman AP 550-1	40	0
PPE	None	100	100

^aAutomotive OEM basecoat/clearcoat system (baked @ 170°F for 40 minutes). ^bBASF: Capron[™] nylon resin production in North America was discontinued May 1, 2007.

^cSabic Innovative Plastics: Noryl[™] GTX902.

^dStyron: Magnum[™] 3490 ABS.

° Sabic Innovative Plastics Noryl[™] BN 9300 polyphenylene ether.

Eastman adhesion promoters were designed to promote adhesion of coatings, inks, and adhesives applied on polypropylene- and polyethylene-based substrates, but can also be used to promote adhesion to difficult-to-adhere metal substrates. Table 10 shows the adhesion-promoting properties of Eastman CP 730-1 adhesion promoter and Eastman AP 550-1 adhesion promoter when utilized in primers for untreated steel, oily steel, polished aluminum, and galvanized steel.

Table 10 Percent retained adhesion of automotive OEM topcoat^a applied over metal substrates

	Adhesion	Initial adhesion ASTM	Adhesion after 72 hours humidity (ASTM D3359 B w/ASTM
Substrate	promoter	D33598	D4585), 120°F
Untreated steel ^b	Eastman CP 730-1	100	100
Untreated steel	None	100	100
Untreated steel ^b	Eastman AP 550-1	100	100
Untreated steel	None	100	100
Oily steel ^c	Eastman CP 730-1	100	100
Oily steel	None	0	_
Oily steel ^c	Eastman AP 550-1	20	0
Oily steel	None	0	_
Polished aluminum ^d	Eastman CP 730-1	100	100
Polished aluminum	None	0	—
Polished aluminum ^d	Eastman AP 550-1	100	100
Polished aluminum	None	0	—
Galvanized steel ^e	Eastman CP 730-1	100	100
Galvanized steel	None	0	
Galvanized steel ^e	Eastman AP 550-1	100	0
Galvanized steel	None	0	

^aAutomotive OEM basecoat/clearcoat system (baked @ 170°F for 40 minutes).

^bS-36 ground steel panels supplied by Q-Panel Corporation.

°S-36 steel panel contaminated with WD-40 lubricant.

 ${}^{\rm d} {\it Polished} \, a luminum \, {\it supplied} \, {\it by} \, Q{\rm -} {\it Panel} \, {\it Corporation}.$

°HB-G70 hot-dipped galvanized supplied by ACT.

Eastman AP 550-1 adhesion promoter

Eastman AP 550-1 adhesion promoter is Eastman's second-generation nonchlorinated product for adhesion to TPO and PP. Nonchlorinated systems are known to demonstrate excellent performance under 2-part urethane (2K) coatings, but often their application is limited to 2Ks. AP 550-1 expands nonchlorinated performance to applications in many melamine-cured systems and lacquer systems.

Due to its chemical structure and the absence of chlorine, Eastman AP 550-1 adhesion promoter exhibits excellent gasoline resistance. Formulators should see an increase in gasoline resistance performance by adding AP 550-1 to their current adhesion promoter system.

Eastman AP 550-1 adhesion promoter is available at 25 weight % solids in Aromatic[™] 100 or in xylene.

Compatibility

Table 11 shows the compatibility of Eastman AP 550-1 NCPO with a variety of coating resins.

						•	-										
Sample #	Duramac [™] HS 207-2706ª	Polymac™ HS 057-5776ª	Polymac™ HS 220-2010ª	Polymac [™] HS 57-5789ª	Desmophen [™] 670A 80 [♭]	Paraloid [™] AU608X°	Acrylamac™ 232-1700ª	Cymel [™] U-80⁴	Cymel [™] 303₫	ˈEpon [™] 828º	Xylene	Eastman AP 550-1 (25%) ^f	9:1	1:1	Ambient conditions	Heated @ 60°C (1 h) ^g	Rating ^h
1	6.26	_	_	_	_	_	_	_	_	_	73.7	20.4	_	•	•	_	Н
2	11.26			_	_	_	_	_	_	_	84.7	4.0	•	_	•	_	1
3	6.26	_		_	_	_	_	_	_	_	73.7	20.0	_	•	_	•	1
4	11.26	_	_	_	_	_	_	_	_	_	84.7	4.0	•	_	_	•	I
5	_	5.88	_	_	_	_	_	_	_	_	74.1	20.0	_	•	•	_	С
6	_	10.58	_	_	_	_	_	_	_	_	85.4	4.0	•	_	•	_	С
7	_	5.88	_	_	_	_	_	_	_	_	74.1	20.0	_	•	_	•	С
8	_	10.58	_	_	_	_	_	_	_	_	85.4	4.0	•	_	_	•	С
9	_		6.66	_	_	_	_	_	_	_	73.3	20.0	_	•	•	_	Н
10	_	_	12.00	_	_	_	_	_	_	_	84.0	4.0	•	_	•	_	1
11	_		6.66	_	_	_	_	_	_	_	73.3	20.0	_	•	_	•	1
12	_	_	12.00		_	_	_	_	_	_	84.0	4.0	•	_	_	•	1
13	_	_	_	5.88	_		_	_	_	_	74.1	20.0	_	•	•	_	С
14	_	_	_	10.58	_	_	_	_	_	_	85.4	4.0	•	_	•	_	С
15	_	_	_	5.88	_	_	_	_	_	_	74.1	20.0	_	•	_	•	С
16	_	_	_	10.58	_	_	_	_	_	_	85.4	4.0	•	_	_	•	С
17	_	_			_	_	_	5.20	_	_	74.8	20.0	_	•	•	_	С
18	_			_	_	_	_	9.38	_	_	86.6	4.0	•	_	•	_	С
19	_	_	_	_	_	_	_	5.20	_	_	74.8	20.0	_	•	_	•	С
20	_	_	_	_	_	_	_	9.38	_	_	86.6	4.0	•	_	_	•	С
21	_	_	_	_	6.26	_	_	_	_	_	73.7	20.0	_	•	•	_	1
22	_			_	11.26	_	_	_	_	_	84.7	4.0	•	_	•	_	1
23	_	_	_		6.26	_	_	_	_	_	73.7	20.0	_	•	_	•	I
24	_	_	_	_	11.26	_	_	_	_	_	84.7	4.0	•	_	_	•	I
25	_	_	_		_	8.34	_	_	_	_	71.7	20.0	_	•	•	—	1
26	_	_			_	15.00	_	_	_	_	81.0	4.0	•	_	•	_	1
27	_			_	_	8.34	_	_	_	_	71.7	20.0	_	•	_	•	1
28	_	_	_	_	_	15.00		_	_	_	81.0	4.0	•	_	_	•	
29	_			_	_	_	8.34	_	_	_	71.7	20.0	_	•	•	_	
30	_	_	_	_	_	_	15.00	_	_	_	81.0	4.0	•	_	•	_	I
31	_	_	_	_	_	_	8.34	_	_	_	71.7	20.0	_	•	_	•	I
32	_	_	_	_	_	_	15.00	_	_	_	81.0	4.0	•	_	_	•	1
33	_	_	_	_	_	_	_	_	5.00	_	75.0	20.0	_	•	•	_	С
34	_	_	_	_	_	_	_	_	9.00	_	87.0	4.0	•	_	•	_	С
37	_	_			_	_	_	_	_	5	75.0	20.0	_	•	_	•	Н
38	_	_	_	_	_	_	_	_	_	9	87.0	4.0	•	_	_	•	Н

Table 11 Eastman AP 550-1 adhesion promoter (25% in xylene) resin compatibility

^aResin supplied by PCCR-USA, Inc.

^bResin supplied by Bayer Aktiengelsellschaft Corp.

^cResin supplied by Dow Chemical Co.

^dResin supplied by Allnex.

^eResin supplied by Momentive Specialty Chemicals, Inc.

^fAdhesion promoter used was Eastman AP 550-1 25% in xylene.

^gSamples were heated at 60°C for 1 hour and evaluated the next day.

^hRatings for solutions: C = compatible; I = incompatible; H = hazy.

How to use

Eastman AP 550-1 adhesion promoter (25% in Aromatic[™] 100 or xylene) can be used for similar applications as chlorinated polyolefins, which are described in other Eastman publications. Brief descriptions for primer and additive applications follow:

Primer applications

- Clean substrate with isopropyl alcohol.
- Prepare Eastman AP 550-1 adhesion promoter at 5%–10% solids and apply to the substrate at a thickness of 0.1–0.3 mils (2.5–7.5 μ).
- Primer may be air dried or heated at 80°C (176°F) for approximately 10 minutes.
- Topcoats can be applied as soon as the primer has been dried.

Additive applications

- Clean substrate with isopropyl alcohol.
- Add 5%–15% Eastman AP 550-1 adhesion promoter, based on resin solids, to the coating and mix thoroughly.
- Test for compatibility or effect on dry film properties.
- If adequate adhesion is not obtained, increase the amount of Eastman AP 550-1 adhesion promoter until adhesion is obtained. Monitor any effects the addition of more AP 550-1 has on dry film properties.

Performance as a primer

Table 12 Percent retained adhesion of various automotive OEM topcoats on Sequel[™] 1440^a TPO after exposure to Cleveland humidity (ASTM D4585 at 49°C [120°F])

Topcoat	Coating bake temperature, °C	Time, h	% Retained adhesion
1K/1K ^b	121 (250)	300–500	100
1K/2K ^c	121 (250)	504	100
2K/2K ^d	80 (176)	50	100

^aSolvay[™] Sequel 1440 has been discontinued.

^b1K/1K = 1-part melamine-cured basecoat/1-part melamine-cured clearcoat. ^c1K/2K = 1-part melamine-cured basecoat/2-part polyurethane-cured clearcoat. ^d2K/2K = 2-part polyurethane-cured basecoat/2-part polyurethane-cured clearcoat.

Table 13 Gasoline resistance (Ford modified Juntunen) on Sequel[™] 1440ª TPO

Topcoat	Coating bake temperature, °C	Time, h	% Adhesion % lifted
1K/1K⁵ (silver)	121 (250)	1	100/0
1K/2K° (blue)	121 (250)	1	100/0
2K/2K ^d (white) ^c	80 (176)	1	100/0

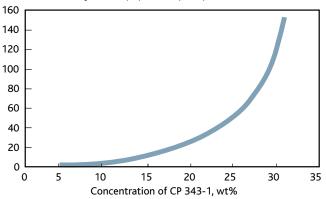
^aSolvay[™] Sequel 1440 has been discontinued.

^b1K/1K = 1-part melamine-cured basecoat/1-part melamine-cured clearcoat. ^c1K/2K = 1-part melamine-cured basecoat/2-part polyurethane-cured clearcoat. ^d2K/2K = 2-part polyurethane-cured basecoat/2-part polyurethane-cured clearcoat.

Eastman CP 343-1 adhesion promoter

Eastman CP 343-1 adhesion promoter is an excellent general purpose adhesion promoter for paint applied to PP and TPO surfaces. Eastman CP 343-1 adhesion promoter has a chlorine content of 18–23 weight % and a softening point range of 80°–95°C. Eastman CP 343-1 adhesion promoter can also be used to promote adhesion to other difficult-to-adhere substrates.

Eastman CP 343-1 adhesion promoter is available in four different forms, 100% solids and 25, 40, and 50 weight % solids in xylene.


Eastman CP 343-1 adhesion promoter 100% is supplied in powder form. Eastman CP 343-1 25% solids in xylene is a liquid at room temperature. Eastman CP 343-1 40 and 50 weight % solids in xylene are viscous liquids and, depending on storage temperature, can be gelled at room temperature. These products can be liquefied again by warming to 38°C with agitation.

Solubility

Figure 1 shows the effect of concentration on solution viscosity of CP 343-1 in toluene. The variation of viscosity with concentration in other solvents would be expected to be similar, although the actual values would be different.

Figure 1 Viscosity of solutions of Eastman CP 343-1 at various concentrations in toluene

Brookfield Viscosity, mPa·s (cP)@ 68°F (20°C)

Compatibility

The compatibility of Eastman CP 343-1 with a variety of resins is shown in Table 14. Resins that gave clear solutions and deposited clear films when combined with CP 343-1 are referred to as compatible. Although CP 343-1 shows borderline compatibility with many resins, this is not a serious problem in formulating primers. The solvent blend for these primers should provide sufficient solvency for all resins in the formulation to avoid phase separation as the primer dries.

Eastman solventborne adhesion promoters for difficult-to-adhere-to substrates (Continued)

Table 14

Resin	CP 343-1 1:1	CP 343-1 1:3	CP 343-1 1:9	CP 343-3 1:3	CP 343-3 1:19	CP 515-2 1:1	CP 515-2 1:3	CP 515-2 1:9	CP 164-1 1:1	CP 164-1 1:9	CP 164-1 1:19
Acryloid™ A-11	_	_		1	I	_	_	_	_	_	_
Acryloid [™] AU608S	_	_		I	С		_	_	I	Н	C
Acryloid [™] B-66	I	I		I	С	I	I	I	I	Н	C
Acryloid [™] B-67	Н	Н	Н	_	_	Н	Н	Н	I	С	C
Acryloid [™] B-72	_	_	_	Н	С	_	_	_	I	I	Н
Acryloid [™] B-99	_	_	_	Н	С	_	_	_	I	С	С
Beckosol [™] 12-035	I	I	Н	_	_	I	I	Н	_	_	_
CAB-551-0.2	_	_	_	I	Н	_	_	_	_	_	_
CK-2400	_	_	_	I	I	_	_	_	I	I	Н
Cymel [™] 303	_	_	_	_	_	_	_	_	I	I	С
Desmodur [™] N3390	_	_	_	_	_	_	_	_	I	I	С
Desmodur [™] N-75	_		_	_	_	_	_	_	I	I	С
Desmophen [™] 1100	_	_	_	_	_	_	_	_	I	I	
Desmophen [™] 670A	_	_	_	_	_	_	_	_	I	Н	С
Elvacite [™] 2042	I	I	I	_	_	I	I	I	_	_	_
Elvacite [™] 2044	I	I	I	_	_	I	I	I	_	_	_
Elvacite [™] 2045	I	I	I	_	_	I	I	I	_	_	_
Elvacite [™] 2046	I	I	I	_	_	I	I	1	_	_	_
Elvax™ 150	_	_	_	Н	Н	_	_	_	I	С	С
Elvax™ 260	I	Н	Н	Н	Н	I	Н	Н	I	I	I
Elvax [™] 40W	I	Н	Н	Н	Н	I	Н	Н	I	С	С
Epon™ 1001	_	_	_	I	I	_	_	_	_	_	_
Epon [™] 815	_		_	_	_	_	_	_	I	I	Н
Epon [™] 828	I	С	С	С	_	С	С	С	I	С	_
Ester gum 8D	I	Н	С	_	_	С	С	С	_	_	_
Hercolyn [™] D	I	С	С	_	_	С	С	С	_	_	_
Pentalyn [™] A	I	Н	С		_	I	Н	С	_	_	_
Picco [™] 5140	I	I	I	_	_	I	Н	Н	_	_	_
Polypale [™] ester 10	Н	Н	С	_	_	Н	С	С	_	_	_
RS ¼-sec nitrocellulose	_	_	_	I	С	_	_	_	_	_	_
Staybelite [™] ester 3	I	С	С	С	С	С	С	С	_	_	_
Staybelite [™] ester 5	I	С	С	_	_	С	С	С	_	_	_
Uni-Rez [™] 7003	_	_	_	I	Н	_	_	_	I	I	C
Urotuf [™] F78-50T	I	I	Н	I	Н	I	I	Н	_	_	_
Urotuf [™] F47-M-60	_	_	_	_	_	_	_	_	I	Н	C
Versamid [™] 140	_	_	_	_	_	_	_	_	Н	С	C
VYHH	_	_	_	I	С	_	_	_	_	_	_

I = *Incompatible H* = *Slight haze C* = *Compatible*

Adhesion of CP 343-1 to various substrates

As shown in Table 15, Eastman CP 343-1 has excellent adhesion to polypropylene and good to excellent adhesion to a variety of other substrates. For this evaluation, a 5 weight % solution of CP 343-1 in toluene was applied to the substrates using a 0.25-mm (10-mil) wet-film applicator and allowed to air-dry for 24 hours at room temperature. Retained adhesion was evaluated by ASTM D3359, Method B, using Intertape[™] 51596 C1C2150514. The adhesion ratings were reported as E (excellent), G (good), F (fair), or P (poor) based on the relative proportion of the CP 343-1 film not removed by the tape.

Table 15 Adhesion of Eastman CP 343-1 adhesion promoter to various substrates

Substrate	Adhesion rating ^a	Substrate	Adhesion rating ^a
Aluminum	E	Polyethylene	Р
Asphalt	b	Polyethylene terephthalate	G
Cellulose acetate	G	Polypropylene	E
Cellulose acetate butyrate	E	Steel, cold-rolled	E
Hardboard	G٢	Steel, galvanized	E
Nylon, fiberglass-filled	G	Steel, phosphatized	E
Paper	E	Tin plate	G
Polyallomer	E	Vinyl, flexible	\mathbf{P}^{d}
Polycarbonate	b	Vinyl, rigid	E
Polyester, unsaturated—SMC	E	Wood	E

^aE = Excellent G = Good F = Fair P = Poor

^bSubstrate softened.

^cFibers adhered to tape.

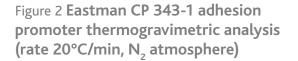
^dFilm remained tacky.

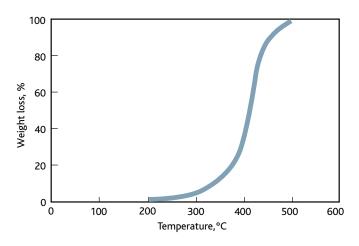
Adhesion between topcoat and primer

Adhesion of several topcoats to the primer film was evaluated and ratings are shown in Table 16. The primer used was a 50/50 blend of CP 343-1/Elvax[™] 260 resin reduced to 5 weight % total solids with toluene. The primer was sprayed on polypropylene panels and allowed to air-dry at room temperature. The topcoats were applied and cured as indicated. Retained adhesion was evaluated by ASTM D3359, Method B, using Intertape[™] 51596 C1C2150514.

Eastman CP 343-1 adhesion promoter can be modified with other resins (see Table 14) to formulate primers to satisfy specific needs. For example, in the primer shown in Table 16, modification of CP 343-1 with ethylene vinyl acetate increases the softening point and cohesive strength of the primer film.

High-temperature stability


While a primer based on Eastman CP 343-1 adhesion promoter does not require baking, its resistance to high temperature is good and it should not be adversely affected by normal baking times and temperatures. The section on "Adhesion between topcoat and primer" indicates it will withstand 110°C (230°F) for 20 minutes, and a thermogravimetric analysis (TGA) suggests it will withstand appreciably higher temperatures. Figure 2, a TGA curve of the CP 343-1 polymer, shows its weight loss as it is heated at 20°C/min under nitrogen from 200° to 500°C. Table 16 Adhesion of topcoats to primed polypropylene panels (primer based on Eastman CP 343-1 adhesion promoter and Elvax[™] 260 resin, formulation 2)


	Adhesion rating ^a					
		20 min @ 110 d aged @ 25°		Air-dried @25°C (77°F)		
Type of topcoat	Initial	24 h	1 wk	24 h	1 wk	
Acrylic automotive lacquer	E	E	E	E	E	
Automotive enamel	F	F	F	E	E	
Oxidizing alkyd enamel	E	E	E	E	E	
Polyurethane enamel	E	F–G	E	E	E	
Styrenated alkyd enamel	E	E	E	E	E	
Nitrocellulose lacquer	Р	Р	Р	E	E	
Thermosetting acrylic enamel	E	E	E	E	E	
Urea-formaldehyde/cellulose acetate butyrate/alkyd enamel	E	E	E	E	E	

		Wt	.%
		1	2
Primer for polypropylene, TPO, and other plastics and metals	CP 343-1 (25%)	20.0	10.0
	Elvax™ 260 or 40W resin ^ь	· · · · · · · · · · · · · · · · · · ·	2.5
	Toluene	80.0	87.5

^aE = Excellent G = Good F = Fair P = Poor

^bEthylene vinyl acetate copolymer resin from DuPont.

Eastman CP 343-3 adhesion promoter

Eastman CP 343-3 adhesion promoter is a higher chlorine containing adhesion promoter that can be used as an additive for coatings, inks, and adhesives for improved adhesion to PP, TPO, and other difficult-to-adhere surfaces. Eastman CP 343-3 adhesion promoter has a chlorine content of 26–32 weight %, which allows for improved compatibility with coatings, inks, and adhesive systems. The higher chlorine content of Eastman CP 343-3 adhesion promoter also allows for improved solubility in a variety of solvents, including esters and ketones. Eastman CP 343-3 adhesion promoter can also be used in formulated primer systems, but care must be taken when formulating primers with this CPO since redissolve can occur upon application of a topcoat due to the improved solubility of the CPO.

Eastman CP 343-3 adhesion promoter is available in two different forms, 25 and 50 weight % solids in xylene. Eastman CP 343-3 adhesion promoter 50% in xylene can become viscous, especially when stored at lower temperatures. If this occurs the product can be liquefied by warming to 38°C with agitation.

Applications and properties for Eastman CP 343-3 adhesion promoter

Stir-in additive

Several commercially produced industrial coatings were evaluated in laboratory tests. The addition of 10 parts (by weight) of Eastman CP 343-3 adhesion promoter (25%) to 100 parts of coating improved adhesion of all the coatings to untreated polypropylene with the exception of a nitrocellulose lacquer and a two-package urethane enamel.

Coatings containing Eastman CP 343-3 adhesion promoter were sprayed onto untreated polypropylene, allowed to dry at room temperature, and evaluated by ASTM D3359, Method B, using Intertape[™] 51596 C1C2150514 for retained adhesion. Similarly prepared samples were immersed for 24 hours in water heated to 38°C (100°F) and tested for adhesion by the same method. Other samples were immersed for 100 hours in water heated to 38°C (100°F) and tested immediately after removal and again after 24 hours' recovery time at room temperature. Results of the adhesion tests are shown in Table 17.

			Coatings with CP 343-3 immersed in water @ 38°C (100°F)			
Coating	With no CP 343-3	10 Parts CP 343-3 (25%)/100 parts coating⁵	After 24 h	After 100 h	After 100 h and 24 h recovery	
Nitrocellulose lacquer	Poor	Poor	—	_	_	
Acrylic lacquer	Poor	Excellent	Good	Good	Good	
Acrylic air-dry enamel	Poor	Excellent	Excellent	Excellent	Excellent	
Alkyd air-dry enamel	Poor	Excellent	Poor	Poor	Excellent	
Two-package urethane enamel	Poor	Poor			_	

Table 17 Adhesion^a results of commercial coatings to untreated polypropylene

^aExcellent = less than 10% of coating removed.

Good=10%-40% of coating removed.

Poor= 50%-100% of coating removed.

^bLevel of chlorinated polyolefin may be adjusted to give optimum properties.

Polypropylene primer

Eastman CP 343-3 adhesion promoter diluted to 5% nonvolatile with toluene has been evaluated as a primer for polypropylene and other plastics. Unmodified coating formulations gave excellent adhesion to plastic substrates primed with a thin film of Eastman CP 343-3 adhesion promoter. Results are shown in Table 18.

Table 18 Adhesion of commercial automotive refinish topcoats to primed untreated polypropylene (primer based on Eastman CP 343-3 adhesion promoter [25%])^a

Topcoat	Topcoats air-dried	Topcoats air-dried and immersed in water
Acrylic lacquer	Excellent ^b	Excellent
Acrylic enamel	Excellent	Excellent

^aPolypropylene panels were wiped with toluene to remove mold release agents, and the primer was sprayed on the panels to approximately 0.1-mil dry-film thickness. ^bLess than 5% of topcoat removed.

Ink additive

Eastman CP 343-3 adhesion promoter is soluble in solvent blends commonly used in gravure and screen inks, as well as in some lithographic inks. It is useful as an adhesion promoter for these inks when printing on polypropylene substrates.

Compatibility

Flexibility, paint adhesion, and other properties can be enhanced by adding modifying resins to the primer formulation. Table 14 shows compatibility of Eastman CP 343-3 adhesion promoter with various resins.

Solvent tolerance

Table 19 shows the solvent tolerance of Eastman CP 343-3 adhesion promoter for a variety of solvents that are used in coatings and inks formulations.

Table 19 Typical solvent tolerance of Eastman CP 343-3 adhesion promoter

-	a Column
	g Solvent per 10 g
Solvent	CP 343-3° (25%)
Aromatic [™] 100	>100
Aromatic [™] 150	>100
n-Butyl acetate	>100
Cyclohexanone	>100
Diisobutyl ketone (DIBK)	>100
Eastman EEP solvent	>100
Ethyl acetate (99%)	>100
Isobutyl acetate	>100
Isobutyl isobutyrate (IBIB)	>100
Isopropyl acetate	>100
Mesityl oxide	>100
Eastman methyl <i>n</i> -amyl ketone (MAK)	>100
Methyl ethyl ketone (MEK)	>100
Methylene chloride	>100
Eastman methyl isoamyl ketone (MIAK)	>100
Methyl isobutyl ketone (MIBK)	>100
Eastman methyl <i>n</i> -propyl ketone (MPK)	>100
1-Nitropropane	>100
2-Nitropropane	>100
<i>n</i> -Propyl acetate	>100
Tetrahydrofuran (THF)	>100
Toluene	>100
Trichloroethane	>100
Xylene	>100
Eastman EB solvent	30
VM&P [™] naphtha	30
Acetone	25
Eastman EP solvent	17
Heptane	17
Magie [™] oil 470 ^ь	17
Diacetone alcohol	14
<i>n</i> -Butyl alcohol	6
Anhydrous ethyl alcohol	4
Methyl alcohol	2
95% Ethyl alcohol	1

^aGrams of solvent required to cause turbidity when added to 10 g of CP 343-3 (25%). Addition of solvent ceased after 100 g were added without turbidity.

^bMagie Bros. Oil Company.

Eastman CP 515-2 adhesion promoter

Eastman CP 515-2 adhesion promoter is a higher chlorine containing adhesion promoter that can be used as an additive for coatings, inks, and adhesives for improved adhesion to PP, TPO, and other difficult-to-adhere surfaces. It is especially useful in graphic art applications. Eastman CP 515-2 adhesion promoter has a chlorine content of 26-32 weight %, which allows for improved compatibility with coatings, inks, and adhesive systems. The higher chlorine content of Eastman CP 515-2 adhesion promoter allows for improved solubility in a variety of solvents, including esters and ketones.

Eastman CP 515-2 adhesion promoter is available at 40 weight % solids in xylene, toluene, and Aromatic[™] 100.

Compatibility

The compatibility of Eastman CP 515-2 adhesion promoter with a variety of resins is shown in Table 14. Resins that combine with Eastman CP 515-2 adhesion promoter to give clear solutions and deposit clear films are referred to as compatible. Although Eastman CP 515-2 adhesion promoter shows borderline compatibility with some resins, this is not a serious problem because of the small amount of Eastman CP 515-2 adhesion promoter usually added to a coating or ink.

Adhesion

As shown in Table 20, Eastman CP 515-2 adhesion promoter has excellent adhesion to polypropylene and good to excellent adhesion to many other substrates. In this study, CP 515-2 was reduced to 5 weight % solids with toluene, cast on the substrates using a 10-mil (0.25-mm) wet-film applicator, and allowed to air-dry for 24 hours at room temperature. Retained adhesion was evaluated by ASTM D3359, Method B, using Permacel[™] 99 tape. Adhesion ratings are based on the relative proportions of the CP 515-2 film not removed by the tape.

Table 20 Adhesion of Eastman CP 515-2 adhesion promoter to various substrates

Substrate	Adhesion rating ^a
Aluminum	E
Asphalt	b
Cellulose acetate	E
Cellulose acetate butyrate	E
Hardboard	Gc
Nylon, fiberglass-filled	G
Paper	E
Polyallomer	E
Polycarbonate	b
Polyester, unsaturated—SMC	E
Polyethylene	Р
Polyethylene terephthalate	G
Polypropylene	E
Steel, cold-rolled	G
Steel, galvanized	E
Steel, phosphatized	G
Tin plate	G
Vinyl, flexible	b
Vinyl, rigid	E
Wood	E
°E = Excellent	
G = Good	
F = Fair	
P = Poor	

^bSubstrate softened.

^cFibers adhered to tape.

Coatings and Inks

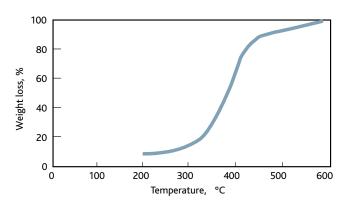
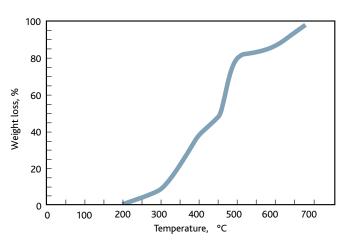

Not only will Eastman CP 515-2 adhesion promoter adhere to a variety of substrates, but when added to coatings and inks, it improves their adhesion to these substrates. To generate the data in Table 21, CP 515-2 (40 weight % in xylene) was added, at a ratio of 5 parts CP 515-2 polymer per 100 parts binder solids, to an acrylic automotive refinish lacquer and to a maleic paste ink. Portions of the lacquer and ink with and without CP 515-2 were applied to untreated polypropylene panels by conventional techniques and allowed to air-dry at room temperature. Adhesion was determined by ASTM D3359, Method B, using Intertape[™] 51596 C1C2150514 (see "Adhesion" subheading), and the actual percentages of lacquer and ink remaining on the panels were measured. The addition of Eastman CP 515-2 adhesion promoter improved adhesion appreciably.

Table 21 Adhesion of an acrylic lacquer and a Maleic ink to untreated polypropylene panels

Coating	Adhesion promoter	Coating retained, %
Acrylic lacquer	None	10
Acrylic lacquer	CP 515-2	90–95
Maleic ink	None	<10
Maleic ink	CP 515-2	90

High-temperature stability

While Eastman CP 515-2 adhesion promoter does not require baking to promote adhesion, its heat resistance is good and it should not be adversely affected by normal baking times and temperatures. Figure 3 is a thermogravimetric analysis (TGA) curve that shows weight loss as the CP 515-2 polymer is heated at 20°C/min under nitrogen from 200° to 600°C. Figure 3 Eastman CP 515-2 thermogravimetric analysis (rate 20°C/min, N, atmosphere)



Eastman CP 153-2 adhesion promoter

Eastman CP 153-2 adhesion promoter is used to promote adhesion of coatings, inks, and adhesives to high-density polyethylene, low-density polyethylene, and other ethylene-based substrates. CP 153-2 has a chlorine content of 21–25 weight % and is typically used in primer applications. CP 153-2 can also be used in conjunction with ethylene vinyl acetate (EVA) copolymers in primer systems for improved adhesion between the primer and the topcoat system.

Eastman CP 153-2 adhesion promoter is available at 25 weight % solids in xylene.

Figure 4 Thermogravimetric analysis of Eastman[™] CP 153-2 adhesion promoter resin

The thermogravimetric analysis curve of CP 153-2 resin with xylene removed shows weight loss of the sample as the heat is increased at a rate of 20°C (36°F)/min under a nitrogen atmosphere. The curve indicates that CP 153-2 resin has excellent heat stability up to approximately 200°C.

Laboratory evaluation

In evaluations conducted in Eastman's laboratories, Eastman CP 153-2 adhesion promoter was reduced to 5 weight % resin with toluene and spray-applied at a dryfilm thickness of 0.1 mil on polyethylene plaques that had been cleaned by wiping with toluene-soaked cloths. The primed, dried polyethylene plaques were top-coated with lacquers and enamels (see Table 22), then dried. Adhesion tests were conducted by ASTM D3359, Method B, using Intertape[™] 51596 C1C2150514. The results were rated subjectively based on the amount of coating remaining on the plaques after the tape was removed.

Table 22 Adhesion of topcoats to polyethylene plaques primed with Eastman CP 153-2 adhesion promoter

Type of topcoat	High-density polyethylene	Low-density polyethylene
Acrylic lacquer	Goodª	Goodª
Acrylic enamel	Good⁵	Excellent ^b
Alkyd enamel	Excellent ^ь	Excellent ^b
Nitrocellulose lacquer	Fair⁵	Fair⁵
^a Formulation 2 in Table 4.		

^bFormulation 1 in Table 4.

Table 23 Starting point formulations using Eastman CP 153-2 adhesion promoter

		Wt	.%
		1	2
Primer for polypropylene, TPO, and other plastics and metals	CP 153-2 (25%)	20.0	10.0
	Elvax [™] 40W or 260 resinª	—	2.5
	Toluene	80.0	87.5

^aEthylene vinyl acetate copolymer resin from Du Pont.

Although unmodified Eastman CP 153-2 adhesion promoter offers excellent adhesion to polyethylene, the adhesion between the primer and certain topcoats, such as urethane enamels, can be improved by adding ethylene vinyl acetate (EVA) copolymers to the primer. Laboratory results indicate that adding EVA to CP 153-2 (1:1 on a solids basis) increased the strength of the primer film. High-I.V. (intrinsic viscosity) EVA resins produced greater heat resistance and toughness than low-I.V. EVA resins. Typical primer formulations are shown in Table 23.

In addition to being useful as a primer for polyethylene, preliminary studies suggest that CP 153-2 may be useful as a primer for ethylene-propylene diene monomer (EPDM) rubber and that blends of CP 153-2 and EVA may be useful as a laminating adhesive between polyethylene and other films. Eastman solventborne adhesion promoters for difficult-to-adhere-to substrates (Continued)

Suppliers

Resin	Туре	Supplier
Acrylamac™	Acrylic	PCCR USA
Beckosol™ 12-035	Nondrying alkyd	Reichhold
СК-2400	Phenolic	Georgia Pacific Chemicals
Cymel [™] 303	Melamine	Cytec
Desmodur™ N-75	Polyisocyanate	Bayer
Desmodur [™] N3390	Polyisocyanate	Bayer
Desmophen [™] 670A	Polyester	Bayer
Desmophen [™] 1100	Polyester	Bayer
Duramac™	Shortoil alkyd	PCCR USA
Eastman CAB-551-0.2	Cellulosic	Eastman Chemical Company
Elvacite [™] 2042	Acrylic	Lucite International
Elvacite [™] 2044	Acrylic	Lucite International
Elvacite [™] 2045	Acrylic	Lucite International
Elvacite [™] 2046	Acrylic	Lucite International
Elvax [™] 40W	Ethylene vinyl acetate	DuPont
Elvax™ 150	Ethylene vinyl acetate	DuPont
Elvax [™] 260	Ethylene vinyl acetate	DuPont
Epon [™] 815	Epoxy resolution	Momentive
Epon [™] 1001	Epoxy resolution	Momentive
Ester gum 8D	Ester gum	Eastman Chemical Company
Hercolyn [™] D	Rosin ester	Pinova
Paraloid™ A-11	Acrylic	Dow Chemical Co.
Paraloid [™] B-66	Acrylic	Dow Chemical Co.
Paraloid [™] B-67	Acrylic	Dow Chemical Co.
Paraloid [™] B-72	Acrylic	Dow Chemical Co.
Paraloid™ B-99	Acrylic	Dow Chemical Co.
Paraloid™ AU608S	Acrylic	Dow Chemical Co.
Pentalyn [™] A	Rosin ester	Ashland
Picco [™] 5140	Hydrocarbon	Eastman Chemical Company
Polymac™	Polyester	PCCR USA
RS [™] ¼-sec nitrocellulose	Cellulosic	Aqualon
Staybelite [™] ester 3	Rosin ester	Eastman Chemical Company
Staybelite [™] ester 5	Rosin ester	Eastman Chemical Company
SylvaPrint™ 7003	Modified maleic	Reichold
Urotuf [™] F78-50T	Urethane	Reichhold
Urotuf [™] F47-M-60	Urethane	Reichhold
Versamid [™] 140	Polyamide	Cognis Corp.
VYHH	Vinyl	Dow Chemical

Eastman solventborne adhesion promoters for difficult-to-adhere-to substrates (Continued)

Conclusion

Eastman's broad portfolio of solventborne adhesion promoters are useful in a variety of automotive and general industrial coatings, inks, and adhesive applications. Our technical personnel are available to help customers address the challenges of defining the right formulation for specific applications. For assistance in determining which of our solventborne adhesion promoters is the most appropriate for your specific needs, contact your Eastman representative or one of the locations listed on the last page of this publication.

Eastman Chemical Company

Corporate Headquarters P.O. Box 431 Kingsport, TN 37662-5280 U.S.A.

Telephone: U.S.A. and Canada, 800-EASTMAN (800-327-8626) Other Locations, (1) 423-229-2000 Fax: (1) 423-229-1193

Eastman Chemical Latin America

9155 South Dadeland Blvd. Suite 1116 Miami, FL 33156 U.S.A.

Telephone: (1) 305-671-2800 Fax: (1) 305-671-2805

Eastman Chemical B.V.

Fascinatio Boulevard 602-614 2909 VA Capelle aan den IJssel The Netherlands

Telephone: (31) 10 2402 111 Fax: (31) 10 2402 100

Eastman (Shanghai) Chemical

Commercial Company, Ltd. Jingan Branch 1206, CITIC Square No. 1168 Nanjing Road (W) Shanghai 200041, P.R. China

Telephone: (86) 21 6120-8700 Fax: (86) 21 5213-5255

Eastman Chemical Japan Ltd.

MetLife Aoyama Building 5F 2-11-16 Minami Aoyama Minato-ku, Tokyo 107-0062 Japan

Telephone: (81) 3-3475-9510 Fax: (81) 3-3475-9515

Eastman Chemical Asia Pacific Pte. Ltd.

#05-04 Winsland House 3 Killiney Road Singapore 239519

Telephone: (65) 6831-3100 Fax: (65) 6732-4930

www.eastman.com

Although the information and recommendations set forth herein are presented in good faith, Eastman Chemical Company makes no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of their suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent, and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available online or by request. You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© 2014 Eastman Chemical Company. Eastman is a trademark of Eastman Chemical Company. All other trademarks are the property of their respective owners.